
Foundations of XML Types: Suggested Answers

Trees and Tree Automata

Q1. Give a bottom-up deterministic tree automaton that recognizes the tree language L composed of the
two trees below:

a

b c

a

c b

A1. A sample bottom-up deterministic tree automaton B that recognizes L:

Alphabet(B) : {a(2), b(0), c(0)}
States(B) : {qa, qb, qc}
Final(B) : {qa}
Rules(B) : {(qb, qc) a→ qa, (qc, qb)

a→ qa, ε
b→ qb, ε

c→ qc}

Q2. Bottom-up tree automata seen during the course traverse trees from the leaves to the root. In a similar
manner, one may define top-down tree automata that recognize trees by going in the opposite direction:
from the root to the leaves. Specifically, a top-down tree automaton A consists in:

Alphabet(A): finite alphabet of symbols
States(A): finite set of states
Rules(A): finite set of transition rules
Initial(A): finite set of initial states (⊆ States(A))

qacc ∈ States(A) : final state

There are two major differences with automata seen during the course:

• transition rules are either of the form: q a→ (q1, q2) where q, q1, q2 ∈ States(A) and a ∈ Alphabet(A)
or of the form q

a→ q1 for leaves.

• a tree is accepted if and only if there exists a run for which all the leaves are labeled with qacc.

Give a top-down tree automaton that recognizes L.

A2. A sample top-down tree automaton T that recognizes L:

Alphabet(T ): {a(2), b(0), c(0)}
States(T ) : {qa, qacc }
Initial(T ): {qa}

qacc ∈ States(T ) : final state
Rules(T ): {qa

a→ (qb, qc), qa
a→ (qc, qb), qb

b→ qacc, qc
c→ qacc}

Q3. Do you see any interest of top-down tree automata in the context of XML stream processing where
XML documents are sequentially parsed (only once) and processed on the fly? Explain.

1



A3. A top-down tree automaton can be used to implement on-the-fly validation of an XML stream against
a given schema. In this context, nodes of an XML document are scanned, parsed, and processed on-
the-fly starting from the root and in the order of a depth-first tree traversal. Top-down automata are
more appropriate in this setting than bottom-up automata. This is because bottom-up automata have
to wait for the full document (leaves) in order to be able to start validation. On the opposite, some
transitions of top-down automata can be triggered without having to wait for the full document, so
that they can be used to detect errors earlier with a stream (i.e., an incomplete document).

Q4. A top-down tree automaton is deterministic iff (1) there is at most one initial state and (2) for each
q ∈ States(A) et a ∈ Alphabet(A) there is at most one rule q a→ (q1, q2) (intuitively, there is at most
one possible transition for each state and symbol).
Is it possible to give a deterministic top-down tree automaton that recognize L? Either give it or
justify.

A4. It is not possible. Indeed, let’s try to build a deterministic top-down tree automaton DT that recog-
nizes L:

Alphabet(DT ) : {a(2), b(0), c(0)}
States(DT ) : {qa, qacc }
Initial(DT ): { qa}

qacc ∈ States(DT ) : final state

The impossible part is to define Rules(DT ):

DT must be deterministic so we have no other choice then putting only one transition rule for qa and a,
such as: qa

a→ (q, q). Then, while still keeping DT deterministic, the only thing we can do is to add the
rules q b→ qacc and q

c→ qacc. However, if we define Rules(DT ) = {qa
a→ (q, q) q

b→ qacc, q
c→ qacc}

then DT also recognizes the two trees below:

a

b b

a

c c

These two trees are not part of L. There does not exist any deterministic top-down tree automaton
that can recognize L (and only L).

Q5. It is known that non-deterministic bottom-up and non-deterministic top-down automata are equally
expressive. From your answers to the previous questions, what can you conclude about the respective
expressive power of deterministic bottom-up and deterministic top-down tree automata? Justify.

A5. If we sum up: the tree language L can be recognized by a bottom-up tree automata (see B above), and
by a non-deterministic top-down tree automaton (see T above). However, no deterministic top-down
tree automaton can recognize L (see previous question). Thus, deterministic top-down tree automata
are strictly less expressive than non-deterministic top-down tree automata.

2


