∇ · E = ρ ε 0 ; ∇ × E = - ∂ ⁡ B ∂ ⁡ t ; c 2 ⁢ ∇ × B = ∂ ⁡ E ∂ ⁡ t + j ε 0 ; ∇ · B = 0
F ( y ) = 1 2 π ∫ - ∞ y ( ∑ k = 1 n sin 2 x k ( t ) ) ⁢ f ( t ) ⁢ dt
C m ( t ) = e - i h E m t a ( dV da ) m 0 E m - E 0 ⁢ e i h ( E m - E 0 ) t - 1 i h ( E m - E 0 )
G ( z ) = exp ( ∑ k = 1 ∞ S k z k k ) = ∏ k = 1 ∞ e S k ⁢ z k k
∫ dx a ⁢ e m ⁢ x - b ⁢ e m ⁢ x = 1 2 m a ⁢ b log a e m ⁢ x - b a e - m ⁢ x + b = 1 m a ⁢ b tanh - 1 ( a b e m ⁢ x )