∇ · E = ρ ε 0 ; ∇ × E = - ∂ B ∂ t ; c 2 ∇ × B = ∂ E ∂ t + j ε 0 ; ∇ · B = 0
F ( y ) = 1 2 π ∫ - ∞ y ( ∑ k = 1 n sin 2 x k ( t ) ) f ( t ) dt
C m ( t ) = e - i h E m t a ( dV da ) m 0 E m - E 0 e i h ( E m - E 0 ) t - 1 i h ( E m - E 0 )
G ( z ) = exp ( ∑ k = 1 ∞ S k z k k ) = ∏ k = 1 ∞ e S k z k k
∫ dx a e m x - b e m x = 1 2 m a b log a e m x - b a e - m x + b = 1 m a b tanh - 1 ( a b e m x )