.. and an Application for the Analysis of Cascading Style Sheets

A Tree Logic... J

Pierre Geneveés

CNRS — Tyrex team
pierre.genevesQ@inria.fr

Toccata seminar, LRI — Feb. 227 2013

1/27

|
Outline

© Insights on the £,, Tree Logic
@ Overview of Perspectives and Applications

© Zoom on the Analysis of CSS

2/27

SEE————————————
Data Model for the Logic

Trees: the logic was originally designed for XML trees

@ Specifically: finite binary labeled trees
@ They model finite ordered unranked labeled trees wlog

@ Bijective encoding of unranked trees as binary trees:

3/27

Formulas of the £, Logic

@ Programs « € {1,2,1,2} for 1/‘)\2
navigating binary trees (@ = «) J I
Lu2e, = formula
T true

| p | -p atomic prop (negated)
| n | -n nominal (negated)
| oVYy | pAY disjunction (conjunction)
| (@) | ()T existential (negated)
| uX.op unary fixpoint (finite recursion)
| wXipiin n-ary fixpoint

4/27

——
Sample Formula and Satisfying Tree

5/27

——
Sample Formula and Satisfying Tree

an{2)b @

5/27

——
Sample Formula and Satisfying Tree

aN(2)bApX.(2)cv (1) X @/
N

——
Sample Formula and Satisfying Tree

aN(2)bApX.(2)cv (1) X @/
N

@ Semantics: models of ¢ are finite trees for which ¢ holds at some node

V" Interesting balance between succinctness and expressive power: XPath, CSS
selectors, and XML types can be translated into the logic, linearly

5/27

Example: Translation of an XPath Expression into £,

@ Formula holds at selected nodes

\ X) @ uZ.p : finite recursion
Q/Lp/\w @ Converse programs are crucial

@ More generally, we have a compiler:

SN\
& \9 ° txpath(e7x) : ‘CXPath X L[_L — Ep,

e Y is the latest navigation step

\Q \;9 @ e initially, X:—\<I>TAﬂ<§>T

for absolute expressions

Translated query: child::a [child::b]

an(pZ (L)xv{(2)Z) AN (LHuY.bV(2)Y
¥ P

6/27

.
L,, Closure under Negation

Cycle-freeness: A key property

@ If both a program and its converse occur
between a .X. binder and X, formula has a
cycle, e.g.: puX. {a) X V (@) X

@ Otherwise the formula is cycle-free

@ in practice, most (all?) formulas are cycle-free
(e.g. XPath translations are always cycle-free)
w

@ Cycle-freeness of L£,, implies closure under negation

e The negation of finite recursion is finite recursion (see paper)
o —p is easily (linearly) expressible in £, for all ¢ € £,

@ Crucial for BC: implication (subtyping, containment tests...)

@ Crucial for implementation

7/27

.
Deciding £,, Satisfiability

Is a formula ¢ € L, satisfiable?

@ Given 1), determine whether there exists a finite tree that satisfies ¢

o Validity: test —p

Principles: Automatic Theorem Proving
@ Search for a proof tree
@ Build the proof bottom up:

“if 1 holds then it is necessarily somewhere up’

8/27

SEE————————————
Search Space Optimization

Idea: Truth Status is Inductive
@ The truth status of 1) can be expressed as a function of its subformulas
@ For boolean connectives, it can be deduced (truth tables)

@ Only base subformulas really matter: Lean(1))

Lean(¥): [wT[@T[@7[@T] a [6 [¢ [we|@e]
topological propositions atomic propositions in &kistential subformulas
A Tree Node: Truth Assignment of Lean(1)) Formulas
@ With some additional constraints, e.g. ~@ Tv -3 T J

9/27

.
Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree J

@ A set of nodes is repeatedly updated (fixpoint computation)

10/ 27

.
Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree
@ Step 1: all possible leaves are added J

10/ 27

.
Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree
@ Step i > 1: all possible parents of previous nodes are added J

10/ 27

|
Satisfiability-Testing Algorithm: Principles

e ®
****** b e T e e

Compatibility relation between nodes

@ Nodes from previous step are proof support:
() ¢ is added if ¢ holds in some node added at previous step

10/ 27

|
Satisfiability-Testing Algorithm: Principles

Compatibility relation between nodes

@ Nodes from previous step are proof support:
() ¢ is added if ¢ holds in some node added at previous step

10/ 27

.
Satisfiability-Testing Algorithm: Principles

Progressive bottom-up reasoning (partial satisfiability) J

@ (@) p are left unproved until a parent is connected

10/ 27

Satisfiability-Testing Algorithm: Principles

Termination
@ If ¢ is present in some root node, then) is satisfiable

@ Otherwise, the algorithm terminates when no more nodes can be added

10 /27

.
Satisfiability-Testing Algorithm: Principles

Implementation techniques J

@ Crucial optimization: symbolic representation

10 /27

Correctness & Complexity

Theorem

The satisfiability problem for a formula ¢ € L,, is decidable in time 20" where
n = |Lean(v)|.

System fully implemented

@ decision procedure
@ compilers (XPath, DTD, XML Schema, CSS selectors, ...)

11/27

Overview of Some Experiments

DTD Symbols | Binary type variables
SMIL 1.0 19 11
XHTML 1.0 Strict 77 325

Table: Types used in experiments.

XPath decision problem | XML type | Time (ms)
e1Ceandex Z e none 353
eq C ez and eq C e3 none 45
e6 C es and es € ep none 41
e7 is satisfiable SMIL 1.0 157
eg is satisfiable XHTML 1.0 2630
eg C (e10 Uenn U 612) XHTML 1.0 2872

Table: Some decision problems and corresponding results.

For the last test, size of the Lean is 550. The search space is 2°%0 ~ 10165,

. more than the
square number of atoms in the universe 1080

12 /27

Tree Logics: an Overview

@ On the theoretical side: £, offers an interesting expressivity, succinctness, optimal

complexity bound
7/ -7 S N
’ \
/ \
/ \
1968 1977 1981 1983 / 2006-2013 Y
! \
L L L L + L A
! \
PDL - I m |
WS2S (tree) CTL p-calculus I forward + backward |
I (for finite trees) |
1 I
Expr.: Mso ? (<MsSO) FO MsO ‘\ Mso ,'
Sat.: Non-elementary EXPTIME EXPTIME EXPTIME \\ 20("') ,I
Impl.: MONA ? ? ? ‘| Ly Soler [/
\ /
\ /

On the practical side:
@ except (hyperexponential) MONA, this is the only one implementation of a

satisfiability solver for such an expressive logic
@ It can be useful for graphs too: the sublogic without backward modalities enjoys the

finite tree model property
13/27

SEE————————————
Going Further: Challenges

Several directions
@ Growing logical expressive power? (currently MSO)

@ Decreasing combined complexity? (impossible without dropping features:
containment for regular tree grammars is hard for EXPTIME)

@ Augmenting succinctness of the logic — good potential

Succinctness is crucial
@ A blow-up in the logical translations affects the combined complexity

@ Augmenting succinctness is a way to address more problems in EXPTIME

14 /27

——
Further Perspectives in Gaining Succinctness

Nominals
@ A nominal p is an atomic proposition whose interpretation is a singleton, card(p)=1

@ Captured! Idea of the translation into logic: “p and nowhereElse(p)”

o
=

p A —~descendant(p)

A —~descendant-or-self(following-sibling(ancestor-or-self(p)))

@ a formula with constant-size footprint in the Lean

... Now, what about card(phi)=n ?

15 /27

E—————————————————
Further Perspectives: card(phi)=n

card(phi)=n
@ Even if this remains regular, this is not a priori succinct

@ For instance, Lagp: set of strings over ¥ = {a, b, c} containing at least 2
occurrences of a and at least two occurrences of b

16 /27

E—————————————————
Further Perspectives: card(phi)=

card(phi)=n
@ Even if this remains regular, this is not a priori succinct

@ For instance, Lpapp: set of strings over X = {a, b, ¢} containing at least 2
occurrences of a and at least two occurrences of b

(alblc)"a(alblc)"a(alb|c)" b(alblc)" b(alblc)" |
(alblc)"a(alblc)" b(a|b|c)"a(a| blc)" b(alblc)" |
(alblc)"a(alblc)" b(a|b|c)" b(alb|c)" a(alblc)" |
(alblc)"b(alb|c)"b(a|blc)" a(alb|c)" a(alblc)" |
(alblc)"b(alb|c)"a(alblc)" b(a| b|c)"a(alblc)" |
(alblc)"b(alb|c)"a(a| b|c)"a(alb|c)" b(alb|c)"

*

b
*b
b

16 /27

E—————————————————
Further Perspectives: card(phi)=n

@ If we add N to the regular expression operators:

((alblc)"a(alblc)"a(alblc)") N ((alblc)" b(a|blc)" b(a|blc)")

In logical terms, conjunction offers a dramatic reduction in expression size

If we now consider the ability to describe numerical constraints on the frequency of
occurrences, we get another exponential reduction in size:

((alble)*a(alblc)*)* N ((al blc)* b(alblc)*)®

Crucial when the complexity of the decision procedure depends on the formula size

17 /27

E—————————————————
Further Perspectives: card(phi)=n

Querying all the articles with 4 or more authors

@ Navigational XPath expression:

’ article[author/following-sibling: :author/following-sibling: :author/following-sibling: :author] ‘

or, using the counting operator in XPath:

’ article[count (author)>=4] ‘

— The counting operator is exponentially more succinct

— Again, we would like efficient static analyzers that directly operate on the succinct
form! (i.e. not pay the price of the blow-up)

18 /27

Facts

Nominals + Backward modalities + card(phi)=n

@ undecidable over graphs [Bonatti-Al'04]

@ decidable over finite trees

Ongoing research...

@ What is the precise complexity for card(phi)=n for finite trees?

@ ... or more generally of rich logical combinators that may duplicate formulas of
arbitrary length (but in a particular manner)?

— Hint: look at the factorization power of the Lean

10 /27

-
Further Perspectives: Follow the Arrows

@ So far: logical description of structural constraints stemming from queries and
schemas

@ Can we also logically capture a notion of computation performed by programs (i.e.
functions)?

@ For example, can the logic capture the type algebra on which CDuce sits?

T o=

b basic type
| T X T product type
| T =T function type
| TV T union type
| -7 complement type
| 0 empty type
v recursion variable
| Hv.T recursive type

@ Yes. We interpret the type algebra in a purely logical manner...

20/ 27

Further Perspectives: Follow the Arrows

Representing functions

f ={(d1,d1),(d>,d3),...} modelizes a function such that:
@ f d; may evaluate (nondeterministically) to df
@ f x where x € {d;} never terminates (and is well-typed)
@ if d/ = ERR then f d; is a type error

Lemma (Frisch et al.): considering only finite such sets of pairs is sufficient for defining
semantic subtyping.

21 /27

-
Further Perspectives: Follow the Arrows

Types as Logical Formulas (detailed encoding in [ICFP'11])

@ Interpretation of 71 — 72: all finite fs such that f : 74 — ™
form(ms — 1) = (=) A [uX.([2] X A (1) (=form(71) V (2) form(72))))
with the shorthand [a] ¢ = = {a) T V{(a) ¢

Intuitively: “a (—) node whose first child, if it exists, satisfies X"

where X = “a node whose next sibling, if it exists, satisfies X, and which has a first
child which either does not satisfy form(71) or has a next sibling which satisfies
form(7z2).”

22 /27

Further Perspectives: Parametric Polymorphism

@ We can go even further and support parametric polymorphism
@ We add type variables « to the type algebra

@ Intuition of subtyping in the presence of type variables:
71(@) < m2(@) whenever, independently of the variables @, any value of type 71 has
type 72 as well.

— Neat formal definition of subtyping by Castagna and Xu (ICFP'11)
— Complete logical encoding in [ICFP'11] (Gesbert, Genevés and Layaida)

@ We can solve subtyping with the satisfiability solver
Interesting facts

o The complexity bound is not affected: 20(Iml+I720) for checking 7 < 7

e The L, logic is expressive and robust by (intricate) extension

23 /27

——
Further Perspectives: Type Synthesis

@ Objective: static type checking for programming languages that do not require type
annotations

@ Method: (i) type inference, (ii) containment check (unsatisfiability check)

@ If the containment check fails between the inferred type and e.g. the expected
output type, an error is reported

@ Novelty: Take advantage of the logic succinctness to represent inferred type
portions (ongoing research...)

@ A possible application: enhancing static type checking for XQuery
@ Current XQuery standardized type system is unsound so far

o if a program involves an upward navigation such as parent::*, the type Any
(true in logic) is inferred
o false negatives may be reported

24 /27

SEE————————————
Some Already Investigated Applications

@ Containment for XML queries [PLDI'07, ICDE'10]

— equivalence test for monadic queries: Vt,Vn € t, qi(t,n) < q2(t, n)
@ Modeling interleaving and counting [[JCAI'11]
@ Dead code analysis for XQuery [ICSE'10, ICSE'11]
@ Impact of schema evolution [ICFP'09, TOIT'11]
— Schema S evolves into S’ impact on a query written against S?
@ Deciding subtyping for rich type algebras [ICFP'11]
— Intersection, negation, function, and polymorphic types

@ Containment for SPARQL queries (polyadic, graphs) under constraints [AAAI'12,
1JCAR'12]

@ CSS Analysis [WWW'12]

25 /27

Try it online*: http://wam.inrialpes.fr/websolver

XML Static Analysis and Type Checking: Online Web Solver
| L XML Static Analysis and Type C.. M

Page précédente Page suivante | || http://wam.inrialpes.fr/web

v | Actualiser Arréter

Google D ol M=o

XML Reasoning Solver Project

Home ' Deme Documentation Publications Team

Enter your formula below:

Bool() = (tzue|falselr
16881727 (Ta * $1) | (nil) in $1;

)= let so = (a* a*So) | (_a* (nil}) in $o;
n() = let Sa = (_a * _a* $e) | (in Se;

See user manual or pick an example

XPath Satisfiability #1

XPath Satisfiability #2

XPath Containment

XPath Equivalence

Mu-formula with values

Mu-formula with recursion

XHTML Type Evolution

MathML Query Evolution

Polymorphism with arrow types #1
with arrow types #2

Reqular expression intersection

Reqular expression equivalence

((edd() ->

P Advanced Options ~ Check Satisfiability

This online demo is a 100% Java implementation of the solver that runs inside a Tomcat serviet. It is based on a thread-sale re-implemention of a BDD
package (JavaBDD). However, the performance of this package is very slow compared to what can be achieved with an off-line solver implementation with
native B0Ds. Ask us if you are interested in the high-speed off-ine version of the solver.

* or offline if performance is critical: the offline version is much faster (native BDD
library, further optimizations like compression of symbols)

26 /27

http://wam.inrialpes.fr/websolver

Long-Term Goal

Long-term view

Heterogeneity is here to stay: JSON (JS serialization) + XML + RDF (knowledge) J

A unified verification toolbox
@ for type-checking web programs: XQuery, XPath, “X...", Jaql etc.
@ for reasoning at the layout level: CSS
@ for supporting heterogenous and rich data values: XML, RDF, JSON ...

@ possibly constrained by some schema languages (XML Schema, RDFS, Schematron,
etc.)

27 /27

Long-Term Goal

Long-term view

Heterogeneity is here to stay: JSON (JS serialization) + XML + RDF (knowledge) J

A unified verification toolbox

@ for type-checking web programs: XQuery, XPath, “X...", Jaql etc.
@ for reasoning at the layout level: CSS
@ for supporting heterogenous and rich data values: XML, RDF, JSON ...

@ possibly constrained by some schema languages (XML Schema, RDFS, Schematron,
etc.)

27 /27

