
A Tree Logic...
... and an Application for the Analysis of Cascading Style Sheets

Pierre Genevès

CNRS – Tyrex team
pierre.geneves@inria.fr

Toccata seminar, LRI – Feb. 22nd , 2013

1 / 27

Outline

1 Insights on the Lµ Tree Logic

2 Overview of Perspectives and Applications

3 Zoom on the Analysis of CSS

2 / 27

Data Model for the Logic

Trees: the logic was originally designed for XML trees

Specifically: finite binary labeled trees

They model finite ordered unranked labeled trees wlog

Bijective encoding of unranked trees as binary trees:

1
2

3

0

0
1
2
3

3 / 27

Formulas of the Lµ Logic

Programs α ∈ {1, 2, 1, 2} for
navigating binary trees (α = α)

1 2

Lµ 3 ϕ,ψ ::= formula
> true

| p | ¬p atomic prop (negated)
| n | ¬n nominal (negated)
| ϕ ∨ ψ | ϕ ∧ ψ disjunction (conjunction)
| 〈α〉ϕ | ¬ 〈α〉> existential (negated)
| µX .ϕ unary fixpoint (finite recursion)
| µXi .ϕi in ψ n-ary fixpoint

4 / 27

Sample Formula and Satisfying Tree

a a

5 / 27

Sample Formula and Satisfying Tree

a ∧ 〈2〉 b a

b

5 / 27

Sample Formula and Satisfying Tree

a ∧ 〈2〉 b ∧ µX . 〈2〉 c ∨
〈
1
〉
X a

b

?

?

c

5 / 27

Sample Formula and Satisfying Tree

a ∧ 〈2〉 b ∧ µX . 〈2〉 c ∨
〈
1
〉
X a

b

?

?

c

Semantics: models of ϕ are finite trees for which ϕ holds at some node

X Interesting balance between succinctness and expressive power: XPath, CSS
selectors, and XML types can be translated into the logic, linearly

5 / 27

Example: Translation of an XPath Expression into Lµ

Translated query: child::a [child::b]

a ∧ (µZ .
〈
1
〉
χ ∨

〈
2
〉
Z)︸ ︷︷ ︸

ϕ

∧ 〈1〉µY .b ∨ 〈2〉Y︸ ︷︷ ︸
ψ

χ

a ϕ

c

a

d

b

ϕ∧ψ

Formula holds at selected nodes

µZ .ϕ : finite recursion

Converse programs are crucial

More generally, we have a compiler:

txpath(e, χ) : LXPath × Lµ → Lµ
χ is the latest navigation step
initially, χ = ¬

〈
1
〉
> ∧ ¬

〈
2
〉
>

for absolute expressions

6 / 27

Lµ Closure under Negation

Cycle-freeness: A key property

If both a program and its converse occur
between a µX . binder and X , formula has a
cycle, e.g.: µX . 〈α〉X ∨ 〈α〉X
Otherwise the formula is cycle-free

in practice, most (all?) formulas are cycle-free
(e.g. XPath translations are always cycle-free)

ϕ ¬ϕ
Finite trees

Infinite structures

Cycle-freeness of Lµ implies closure under negation

The negation of finite recursion is finite recursion (see paper)
¬ϕ is easily (linearly) expressible in Lµ for all ϕ ∈ Lµ

Crucial for BC: implication (subtyping, containment tests...)

Crucial for implementation

7 / 27

Deciding Lµ Satisfiability

Is a formula ψ ∈ Lµ satisfiable?

Given ψ, determine whether there exists a finite tree that satisfies ψ

Validity: test ¬ψ

Principles: Automatic Theorem Proving

Search for a proof tree

Build the proof bottom up:

“ if ψ holds then it is necessarily somewhere up”

8 / 27

Search Space Optimization

Idea: Truth Status is Inductive

The truth status of ψ can be expressed as a function of its subformulas

For boolean connectives, it can be deduced (truth tables)

Only base subformulas really matter: Lean(ψ)

Lean(ψ) : 〈1〉> 〈2〉>
〈
1
〉
>

〈
2
〉
> a b σ 〈1〉ϕ 〈2〉ϕ︸ ︷︷ ︸

topological propositions
︸ ︷︷ ︸
atomic propositions in ψ

︸ ︷︷ ︸
existential subformulas

A Tree Node: Truth Assignment of Lean(ψ) Formulas

With some additional constraints, e.g. ¬ 〈1〉> ∨ ¬ 〈2〉>

9 / 27

Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree

A set of nodes is repeatedly updated (fixpoint computation)

10 / 27

Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree

Step 1: all possible leaves are added

10 / 27

Satisfiability-Testing Algorithm: Principles

Bottom-up construction of proof tree

Step i > 1: all possible parents of previous nodes are added

10 / 27

Satisfiability-Testing Algorithm: Principles

〈1〉ϕ

ϕ

ϕ 〈
2
〉
ϕ

Compatibility relation between nodes

Nodes from previous step are proof support:
〈α〉ϕ is added if ϕ holds in some node added at previous step

10 / 27

Satisfiability-Testing Algorithm: Principles

η

¬b ∧ µX .b ∨
〈
2
〉
X︸ ︷︷ ︸

η

Compatibility relation between nodes

Nodes from previous step are proof support:
〈α〉ϕ is added if ϕ holds in some node added at previous step

10 / 27

Satisfiability-Testing Algorithm: Principles

Progressive bottom-up reasoning (partial satisfiability)

〈α〉ϕ are left unproved until a parent is connected

10 / 27

Satisfiability-Testing Algorithm: Principles

ψ

〈α〉ϕ

Termination

If ψ is present in some root node, then ψ is satisfiable

Otherwise, the algorithm terminates when no more nodes can be added

10 / 27

Satisfiability-Testing Algorithm: Principles

ψ

Implementation techniques

Crucial optimization: symbolic representation

10 / 27

Correctness & Complexity

Theorem

The satisfiability problem for a formula ψ ∈ Lµ is decidable in time 2O(n) where
n = |Lean(ψ)|.

System fully implemented

decision procedure

compilers (XPath, DTD, XML Schema, CSS selectors, ...)

11 / 27

Overview of Some Experiments

DTD Symbols Binary type variables
SMIL 1.0 19 11
XHTML 1.0 Strict 77 325

Table: Types used in experiments.

XPath decision problem XML type Time (ms)
e1 ⊆ e2 and e2 6⊆ e1 none 353
e4 ⊆ e3 and e4 ⊆ e3 none 45
e6 ⊆ e5 and e5 6⊆ e6 none 41

e7 is satisfiable SMIL 1.0 157
e8 is satisfiable XHTML 1.0 2630

e9 ⊆ (e10 ∪ e11 ∪ e12) XHTML 1.0 2872

Table: Some decision problems and corresponding results.

For the last test, size of the Lean is 550. The search space is 2550 ≈ 10165... more than the
square number of atoms in the universe 1080

12 / 27

Tree Logics: an Overview

On the theoretical side: Lµ offers an interesting expressivity, succinctness, optimal
complexity bound

Expr.:

Sat.:

Impl.:

1968

WS2S

MSO

Non-elementary

MONA

1977

PDL(tree)

? (<MSO)

EXPTIME

?

1981

CTL

FO

EXPTIME

?

1983

µ-calculus

MSO

EXPTIME

?

2006-2013

Lµ
forward + backward
(for finite trees)

MSO

2O(n)

Lµ Solver

On the practical side:
except (hyperexponential) MONA, this is the only one implementation of a
satisfiability solver for such an expressive logic
It can be useful for graphs too: the sublogic without backward modalities enjoys the
finite tree model property

13 / 27

Going Further: Challenges

Several directions

Growing logical expressive power? (currently MSO)

Decreasing combined complexity? (impossible without dropping features:
containment for regular tree grammars is hard for EXPTIME)

Augmenting succinctness of the logic → good potential

Succinctness is crucial

A blow-up in the logical translations affects the combined complexity

Augmenting succinctness is a way to address more problems in EXPTIME

14 / 27

Further Perspectives in Gaining Succinctness

Nominals

A nominal p is an atomic proposition whose interpretation is a singleton, card(p)=1

Captured! Idea of the translation into logic: “p and nowhereElse(p)”

self
ancestor

descendant

pr
ec

ed
ing

following

following-sibling

preceding-sibling

child

parent

p ∧ ¬descendant(p)

∧ ¬descendant-or-self(following-sibling(ancestor-or-self(p)))

a formula with constant-size footprint in the Lean

... Now, what about card(phi)=n ?
15 / 27

Further Perspectives: card(phi)=n

card(phi)=n

Even if this remains regular, this is not a priori succinct

For instance, L2a2b: set of strings over Σ = {a, b, c} containing at least 2
occurrences of a and at least two occurrences of b

16 / 27

Further Perspectives: card(phi)=n

card(phi)=n

Even if this remains regular, this is not a priori succinct

For instance, L2a2b: set of strings over Σ = {a, b, c} containing at least 2
occurrences of a and at least two occurrences of b

(a|b|c)?a(a|b|c)?a(a|b|c)?b(a|b|c)?b(a|b|c)? |
(a|b|c)?a(a|b|c)?b(a|b|c)?a(a|b|c)?b(a|b|c)? |
(a|b|c)?a(a|b|c)?b(a|b|c)?b(a|b|c)?a(a|b|c)? |
(a|b|c)?b(a|b|c)?b(a|b|c)?a(a|b|c)?a(a|b|c)? |
(a|b|c)?b(a|b|c)?a(a|b|c)?b(a|b|c)?a(a|b|c)? |
(a|b|c)?b(a|b|c)?a(a|b|c)?a(a|b|c)?b(a|b|c)?

16 / 27

Further Perspectives: card(phi)=n

If we add ∩ to the regular expression operators:

((a|b|c)?a(a|b|c)?a(a|b|c)?) ∩ ((a|b|c)?b(a|b|c)?b(a|b|c)?)

In logical terms, conjunction offers a dramatic reduction in expression size

If we now consider the ability to describe numerical constraints on the frequency of
occurrences, we get another exponential reduction in size:

((a|b|c)?a(a|b|c)?)2 ∩ ((a|b|c)?b(a|b|c)?)2

Crucial when the complexity of the decision procedure depends on the formula size

17 / 27

Further Perspectives: card(phi)=n

Querying all the articles with 4 or more authors

Navigational XPath expression:

article[author/following-sibling::author/following-sibling::author/following-sibling::author]

or, using the counting operator in XPath:

article[count(author)>=4]

→ The counting operator is exponentially more succinct

→ Again, we would like efficient static analyzers that directly operate on the succinct
form! (i.e. not pay the price of the blow-up)

18 / 27

Facts

Nominals + Backward modalities + card(phi)=n

undecidable over graphs [Bonatti-AI’04]

decidable over finite trees

Ongoing research...

What is the precise complexity for card(phi)=n for finite trees?

... or more generally of rich logical combinators that may duplicate formulas of
arbitrary length (but in a particular manner)?

→ Hint: look at the factorization power of the Lean

19 / 27

Further Perspectives: Follow the Arrows

So far: logical description of structural constraints stemming from queries and
schemas

Can we also logically capture a notion of computation performed by programs (i.e.
functions)?

For example, can the logic capture the type algebra on which CDuce sits?
τ ::=

b basic type
| τ × τ product type
| τ → τ function type
| τ ∨ τ union type
| ¬τ complement type
| 0 empty type
| v recursion variable
| µv.τ recursive type

Yes. We interpret the type algebra in a purely logical manner...

20 / 27

Further Perspectives: Follow the Arrows

Representing functions

f = {(d1, d ′
1), (d2, d ′

2), . . .} modelizes a function such that:

f di may evaluate (nondeterministically) to d ′
i

f x where x 6∈ {di} never terminates (and is well-typed)

if d ′
i = ERR then f di is a type error

Lemma (Frisch et al.): considering only finite such sets of pairs is sufficient for defining
semantic subtyping.

21 / 27

Further Perspectives: Follow the Arrows

Types as Logical Formulas (detailed encoding in [ICFP’11])

Interpretation of τ1 → τ2: all finite f s such that f : τ1 → τ2

form(τ1 → τ2) = (→) ∧ [1]µX .([2]X ∧ 〈1〉 (¬form(τ1) ∨ 〈2〉 form(τ2))))

with the shorthand [α]ϕ = ¬ 〈α〉> ∨ 〈α〉ϕ
Intuitively: “a (→) node whose first child, if it exists, satisfies X ”

where X = “a node whose next sibling, if it exists, satisfies X , and which has a first
child which either does not satisfy form(τ1) or has a next sibling which satisfies
form(τ2).”

22 / 27

Further Perspectives: Parametric Polymorphism

We can go even further and support parametric polymorphism

We add type variables α to the type algebra

Intuition of subtyping in the presence of type variables:
τ1(α) 6 τ2(α) whenever, independently of the variables α, any value of type τ1 has
type τ2 as well.

→ Neat formal definition of subtyping by Castagna and Xu (ICFP’11)

→ Complete logical encoding in [ICFP’11] (Gesbert, Genevès and Layaïda)

We can solve subtyping with the satisfiability solver

Interesting facts

The complexity bound is not affected: 2O(|τ1|+|τ2|) for checking τ1 ≤ τ2
The Lµ logic is expressive and robust by (intricate) extension

23 / 27

Further Perspectives: Type Synthesis

Objective: static type checking for programming languages that do not require type
annotations

Method: (i) type inference, (ii) containment check (unsatisfiability check)

If the containment check fails between the inferred type and e.g. the expected
output type, an error is reported

Novelty: Take advantage of the logic succinctness to represent inferred type
portions (ongoing research...)

A possible application: enhancing static type checking for XQuery

Current XQuery standardized type system is unsound so far

if a program involves an upward navigation such as parent::*, the type Any
(true in logic) is inferred
false negatives may be reported

24 / 27

Some Already Investigated Applications

Containment for XML queries [PLDI’07, ICDE’10]

→ equivalence test for monadic queries: ∀t, ∀n ∈ t, q1(t, n)
?
= q2(t, n)

Modeling interleaving and counting [IJCAI’11]

Dead code analysis for XQuery [ICSE’10, ICSE’11]

Impact of schema evolution [ICFP’09, TOIT’11]

→ Schema S evolves into S ′: impact on a query written against S?

Deciding subtyping for rich type algebras [ICFP’11]

→ Intersection, negation, function, and polymorphic types

Containment for SPARQL queries (polyadic, graphs) under constraints [AAAI’12,
IJCAR’12]

CSS Analysis [WWW’12]

25 / 27

Try it online∗: http://wam.inrialpes.fr/websolver

* or offline if performance is critical: the offline version is much faster (native BDD
library, further optimizations like compression of symbols)

26 / 27

http://wam.inrialpes.fr/websolver

Long-Term Goal

Long-term view

Heterogeneity is here to stay: JSON (JS serialization) + XML + RDF (knowledge)

A unified verification toolbox

for type-checking web programs: XQuery, XPath, “X...”, Jaql etc.

for reasoning at the layout level: CSS

for supporting heterogenous and rich data values: XML, RDF, JSON ...

possibly constrained by some schema languages (XML Schema, RDFS, Schematron,
etc.)

27 / 27

Long-Term Goal

Long-term view

Heterogeneity is here to stay: JSON (JS serialization) + XML + RDF (knowledge)

A unified verification toolbox

for type-checking web programs: XQuery, XPath, “X...”, Jaql etc.

for reasoning at the layout level: CSS

for supporting heterogenous and rich data values: XML, RDF, JSON ...

possibly constrained by some schema languages (XML Schema, RDFS, Schematron,
etc.)

27 / 27

