
Efficient Static Analysis of XML Paths and
Types

Pierre Genevès – EPFL, Switzerland

Joint work with Nabil Layaïda and Alan Schmitt – INRIA, France

PLDI’07, San Diego, June 2007

Introduction

More and more XML data

Objective: ensuring safety and efficiency of programs that
manipulate XML

Two ways for processing XML:
1 General purpose languages extended with librairies
2 DSLs: e.g. XSLT, XQuery (W3C standards) that rely on XPath

In both cases: static analysis of programs very hard (very
complex to detect errors at compile-time)

This paper: we solve important XML static analysis tasks by
reduction to satisfiability of a new tree logic

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

/

c

a

b

c

a

b ∈
Type T

/descendant::b/parent::a/child::c
/descendant::b/parent::a/child::c︸ ︷︷ ︸

q

⊕T ?
= ∅ ⊕T

?≡ /child::a/child::c︸ ︷︷ ︸
qoptimised

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

/

c

a

b

c

a

b ∈
Type T

/descendant::b/parent::a/child::c

/descendant::b/parent::a/child::c︸ ︷︷ ︸
q

⊕T ?
= ∅ ⊕T

?≡ /child::a/child::c︸ ︷︷ ︸
qoptimised

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

/

c

a

bb

c

a

bb ∈
Type T

/descendant::b/parent::a/child::c

/descendant::b/parent::a/child::c︸ ︷︷ ︸
q

⊕T ?
= ∅ ⊕T

?≡ /child::a/child::c︸ ︷︷ ︸
qoptimised

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

/

c

aa

b

c

aa

b ∈
Type T

/descendant::b/parent::a/child::c

/descendant::b/parent::a/child::c︸ ︷︷ ︸
q

⊕T ?
= ∅ ⊕T

?≡ /child::a/child::c︸ ︷︷ ︸
qoptimised

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

/

c

a

b

cc

a

b ∈
Type T

/descendant::b/parent::a/child::c
/descendant::b/parent::a/child::c︸ ︷︷ ︸

q

⊕T ?
= ∅ ⊕T

?≡ /child::a/child::c︸ ︷︷ ︸
qoptimised

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

/

c

a

b

cc

a

b ∈
Type T

/descendant::b/parent::a/child::c︸ ︷︷ ︸
q

⊕T ?
= ∅ ⊕T

?≡ /child::a/child::c︸ ︷︷ ︸
qoptimised

for x in (q) do {
 ...
}

let n = q; ...

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

/

c

a

b

cc

a

b ∈
Type T

/descendant::b/parent::a/child::c︸ ︷︷ ︸
q

⊕T ?
= ∅ ⊕T

?≡ /child::a/child::c︸ ︷︷ ︸
qoptimised

for x in (q) do {
 ...
}

let n = q; ...

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

/

c

a

b

cc

a

b ∈
Type T

/descendant::b/parent::a/child::c︸ ︷︷ ︸
q

⊕T ?
= ∅ ⊕T

?≡ /child::a/child::c︸ ︷︷ ︸
qoptimised

for x in (q) do {
 ...
}

let n = q; ...

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

/

c

a

b

cc

a

b ∈
Type T

/descendant::b/parent::a/child::c︸ ︷︷ ︸
q

⊕T
?≡ /child::a/child::c︸ ︷︷ ︸

qoptimised

for x in (q) do {
 ...
}

let n = q; ...

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

/

c

a

b

cc

a

b ∈
Type T

/descendant::b/parent::a/child::c︸ ︷︷ ︸
q

⊕T
?≡ /child::a/child::c︸ ︷︷ ︸

qoptimised

for x in (q) do {
 ...
}

let n = q; ...

qoptimised

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

//

cc

aa

bb

ccc

aa

bb ∈
Type T

/descendant::b/parent::a/child::c︸ ︷︷ ︸
q

⊕T
?≡ /child::a/child::c︸ ︷︷ ︸

qoptimised

for x in (q) do {
 ...
}

let n = q; ...

qoptimised

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

//

cc

aa

bb

ccc

aa

bb ∈
Type T

/descendant::b/parent::a/child::c︸ ︷︷ ︸
q

⊕T
?≡ /child::a/child::c︸ ︷︷ ︸

qoptimised

q ∩ qforbidden
?

6= ∅

for x in (q) do {
 ...
}

let n = q; ...

qoptimised

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

//

cc

aa

bb

ccc

aa

bb ∈
Type T

/descendant::b/parent::a/child::c︸ ︷︷ ︸
q

⊕T
?≡ /child::a/child::c︸ ︷︷ ︸

qoptimised

q ∩ qforbidden
?

6= ∅

for x in (q) do {
 ...
}

let n = q; ...

qoptimised!
 forbidden access!

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

//

cc

aa

bb

ccc

aa

bb ∈
Type T

/descendant::b/parent::a/child::c︸ ︷︷ ︸
q

⊕T
?≡ /child::a/child::c︸ ︷︷ ︸

qoptimised

q ∩ qforbidden
?

6= ∅

for x in (q) do {
 ...
}

let n = q; ...

qoptimised!
 forbidden access!

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

Programs that manipulate
XML trees
Analysis:

tree types (XML Schemas,
DTDs)
queries (XPath)

//

cc

aa

bb

ccc

aa

bb ∈
Type T

/descendant::b/parent::a/child::c︸ ︷︷ ︸
q

⊕T
?≡ /child::a/child::c︸ ︷︷ ︸

qoptimised

q ∩ qforbidden
?

6= ∅

for x in (q) do {
 ...
}

let n = q; ...

qoptimised!
 forbidden access!

Before: complexity too high, implementations out of scope...
This paper: optimal complexity + efficient implementation

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

XPath Static Analysis Tasks

Basic Tasks
1 XPath typing
2 XPath query comparisons

query containment, emptiness, overlap, equivalence

Main Applications

Static analysis of host languages: error detection, optimization
(static type-checkers, optimizing compilers)
Checking integrity constraints in XML databases

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Challenges

Query comparisons and typing are undecidable for the complete
XPath language

Open Questions

What are the largest XPath fragments with decidable static
analysis?
Which fragments can be effectively decided in a compiler?
Is there a generic algorithm able to solve all related XPath
decision problems?

Difficulties
Considered XPath operators and their combination (e.g.,
multidirectional navigation, recursion)
Checking properties on a possibly infinite set of XML documents
Very high computational complexity

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Challenges

Query comparisons and typing are undecidable for the complete
XPath language

Open Questions

What are the largest XPath fragments with decidable static
analysis?
Which fragments can be effectively decided in a compiler?
Is there a generic algorithm able to solve all related XPath
decision problems?

Difficulties
Considered XPath operators and their combination (e.g.,
multidirectional navigation, recursion)
Checking properties on a possibly infinite set of XML documents
Very high computational complexity

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Challenges

Query comparisons and typing are undecidable for the complete
XPath language

Open Questions

What are the largest XPath fragments with decidable static
analysis?
Which fragments can be effectively decided in a compiler?
Is there a generic algorithm able to solve all related XPath
decision problems?

Difficulties
Considered XPath operators and their combination (e.g.,
multidirectional navigation, recursion)
Checking properties on a possibly infinite set of XML documents
Very high computational complexity

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

The Logical Approach: Overview

Find an appropriate logic for reasoning on XML trees
Formulate the problem into the logic and test satisfiability

XPath
Fragment

Schemas Logic

q1

q2

Yes/No
Satisfiability
Testing
Algorithm

¬(ϕ ⇒ ϕ) 21

S

ϕS

Translation

Translation

counter-
example

Critical Aspects
1 The logic must be expressive enough
2 The algorithm must be effective in practice for XML translations

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

The Logical Approach: Overview

Find an appropriate logic for reasoning on XML trees
Formulate the problem into the logic and test satisfiability

XPath
Fragment

Schemas Logic

q1

q2

Yes/No
Satisfiability
Testing
Algorithm

¬(ϕ ⇒ ϕ) 21

S

ϕS

Translation

Translation

counter-
example

Critical Aspects
1 The logic must be expressive enough
2 The algorithm must be effective in practice for XML translations

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Models for XML Documents

Finite ordered binary trees, one label per node
Bijective encoding of unranked trees as binary trees:

1
2

3

0

0
1
2
3

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Formulas of the Lµ Logic

Programs α ∈ {1,2,1,2} for
navigating binary trees (α = α)

1 2

Lµ 3 ϕ,ψ ::= formula
> true

| σ | ¬σ atomic prop (negated)
| s | ¬s starting context (negated)
| ϕ ∨ ψ disjunction
| ϕ ∧ ψ conjunction
| 〈α〉ϕ | ¬ 〈α〉> existential (negated)
| X variable
| µX .ϕ unary fixpoint
| µXi .ϕi in ψ n-ary fixpoint

Closed formulas

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

µZ .ϕ : finite recursion
{1,2} required for forward axes!
{1,2} required for reverse axes!
Converse programs are crucial
Almost full XPath can be
translated (only variable counting
constraints and data value
comparisons left)
Schemas can also be captured!

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

µZ .ϕ : finite recursion
{1,2} required for forward axes!
{1,2} required for reverse axes!
Converse programs are crucial
Almost full XPath can be
translated (only variable counting
constraints and data value
comparisons left)
Schemas can also be captured!

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a

a

µZ .ϕ : finite recursion
{1,2} required for forward axes!
{1,2} required for reverse axes!
Converse programs are crucial
Almost full XPath can be
translated (only variable counting
constraints and data value
comparisons left)
Schemas can also be captured!

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a

c

a

µZ .ϕ : finite recursion
{1,2} required for forward axes!
{1,2} required for reverse axes!
Converse programs are crucial
Almost full XPath can be
translated (only variable counting
constraints and data value
comparisons left)
Schemas can also be captured!

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a

a

c

a

µZ .ϕ : finite recursion
{1,2} required for forward axes!
{1,2} required for reverse axes!
Converse programs are crucial
Almost full XPath can be
translated (only variable counting
constraints and data value
comparisons left)
Schemas can also be captured!

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a

b

a

c

a

µZ .ϕ : finite recursion
{1,2} required for forward axes!
{1,2} required for reverse axes!
Converse programs are crucial
Almost full XPath can be
translated (only variable counting
constraints and data value
comparisons left)
Schemas can also be captured!

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a ∧
(
µZ .

〈
2
〉
s ∨

〈
2
〉

Z
)

s

b

a

c

a

µZ .ϕ : finite recursion
{1,2} required for forward axes!
{1,2} required for reverse axes!
Converse programs are crucial
Almost full XPath can be
translated (only variable counting
constraints and data value
comparisons left)
Schemas can also be captured!

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a ∧
(
µZ .

〈
2
〉
s ∨

〈
2
〉

Z
)/preceding-sibling::b

s

b

a

c

a

µZ .ϕ : finite recursion
{1,2} required for forward axes!
{1,2} required for reverse axes!
Converse programs are crucial
Almost full XPath can be
translated (only variable counting
constraints and data value
comparisons left)
Schemas can also be captured!

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a ∧
(
µZ .

〈
2
〉
s ∨

〈
2
〉

Z
)

a ∧
(
µZ .

〈
2
〉
s ∨

〈
2
〉

Z
)/preceding-sibling::b

b ∧ [µY . 〈2〉 () ∨ 〈2〉Y]

s

b

a

c

a

b

µZ .ϕ : finite recursion
{1,2} required for forward axes!
{1,2} required for reverse axes!
Converse programs are crucial
Almost full XPath can be
translated (only variable counting
constraints and data value
comparisons left)
Schemas can also be captured!

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a ∧
(
µZ .

〈
2
〉
s ∨

〈
2
〉

Z
)

a ∧
(
µZ .

〈
2
〉
s ∨

〈
2
〉

Z
)/preceding-sibling::b

b ∧ [µY . 〈2〉 () ∨ 〈2〉Y]

s

b

a

c

a

b

µZ .ϕ : finite recursion
{1,2} required for forward axes!
{1,2} required for reverse axes!
Converse programs are crucial
Almost full XPath can be
translated (only variable counting
constraints and data value
comparisons left)
Schemas can also be captured!

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a ∧
(
µZ .

〈
2
〉
s ∨

〈
2
〉

Z
)

a ∧
(
µZ .

〈
2
〉
s ∨

〈
2
〉

Z
)/preceding-sibling::b

b ∧ [µY . 〈2〉 () ∨ 〈2〉Y]

s

b

a

c

a

b

µZ .ϕ : finite recursion
{1,2} required for forward axes!
{1,2} required for reverse axes!
Converse programs are crucial
Almost full XPath can be
translated (only variable counting
constraints and data value
comparisons left)
Schemas can also be captured!

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a ∧
(
µZ .

〈
2
〉
s ∨

〈
2
〉

Z
)

a ∧
(
µZ .

〈
2
〉
s ∨

〈
2
〉

Z
)/preceding-sibling::b

b ∧ [µY . 〈2〉 () ∨ 〈2〉Y]

s

b

a

c

a

b

µZ .ϕ : finite recursion
{1,2} required for forward axes!
{1,2} required for reverse axes!
Converse programs are crucial
Almost full XPath can be
translated (only variable counting
constraints and data value
comparisons left)
Schemas can also be captured!

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Satisfiability-Testing Algorithm: Principles

Search for a Tree that Satisfies ψ

ψ truth status can be determined from a few of its subformulas
A node is a ψ-type (conjunction of formulas)

Bottom-up Construction of a Tree of ψ-types

A set T of ψ-types is repeatedly updated (least fixpoint
computation)

Initially: ∅
Step 1 : all possible leaves are added
Step i : all possible parent nodes of current nodes are added

Termination
If ψ is present in some node, then ψ is satisfiable
Otherwise, the algorithm terminates when no more node can be
added

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Correctness & Complexity

Theorem
The satisfiability problem for a formula ψ ∈ Lµ is decidable in time
2O(n) where n is the size of ψ.

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Experimental Results

The First Implementation

Able to handle such a large XPath fragment
Able to handle schemas (regular tree types)

What Can Now Be Done

Time (s) Solved Problems

< 0.5 Comparisons of XPath queries (XPathmark) without tree types

< 1 Medium tree types involved (≈ 30 symbols, ≈ 20 variables)
Example: W3C SMIL

< 3 Large tree types involved (≈ 100 symbols, ≈ 400 variables)
Example: W3C XHTML

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Summary and Perspectives

A New Tree Logic

Best balance known between expressiveness/complexity
Translation of main XML concepts: linear
Implementation already fairly efficient for static analysis

Future Work
Extensions of the logic

Decidable data-value comparisons
Decidable counting constraints

Type inference for XSLT/XQuery without output type annotations
More applications in program analysis?

Lµ is as expressive as MSO, and the solver is orders of magnitude
faster than MONA...

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

Thank you!

pierre.geneves@epfl.ch

P. Genevès, EPFL Efficient Static Analysis of XML Paths and Types

