Efficient Static Analysis of XML Paths and

Types

Pierre Geneves — EPFL, Switzerland

Joint work with Nabil Layaida and Alan Schmitt — INRIA, France

PLDI'07, San Diego, June 2007

Introduction

@ More and more XML data

@ Obijective: ensuring safety and efficiency of programs that
manipulate XML

@ Two ways for processing XML:

@ General purpose languages extended with librairies
@ DSLs: e.g. XSLT, XQuery (W3C standards) that rely on XPath

@ In both cases: static analysis of programs very hard (very
complex to detect errors at compile-time)

@ This paper: we solve important XML static analysis tasks by
reduction to satisfiability of a new tree logic

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

@ Programs that manipulate v

N
XML trees /69\ 9
@ Analysis:) \c)\ €

9

o tree types (XML Schemas,
DTDs)
e queries (XPath) \b)

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

@ Programs that manipulate v

N
XML trees /69\ 9
@ Analysis:) \c)\ €

9

o tree types (XML Schemas,
DTDs)
e queries (XPath) \b)

/descendant::b/parent::a/child::c

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs
9

@ Programs that manipulate N
XML trees C‘)\ 9
. 4
@ Analysis: (%) \c)\ €
o tree types (XML Schemas, \9
DTDs) /

e queries (XPath) o

/descendant::b/parent::a/child::c

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

@ Programs that manipulate J\
XML trees /Gi 9
J 9 -

@ Analysis:
o tree types (XML Schemas,
DTDs) /e
e queries (XPath) \b)

/descendant::b/parent::a/child::c

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

@ Programs that manipulate

/J\
XML trees / - 9
@ Analysis:) €
9
)

o tree types (XML Schemas,
DTDs)
e queries (XPath) b

/descendant::b/parent::a/child::c

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

@ Programs that manipulate

/J\
XML trees / - 9
@ Analysis:) €
9
)

o tree types (XML Schemas,
DTDs)
e queries (XPath) b

/descendant::b/parent::a/child::c

q

for xin (q) do {

!

letn=q; ...

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

@ Programs that manipulate

/J\
XML trees / - 9
@ Analysis:) €
9
)

o tree types (XML Schemas,
DTDs)
e queries (XPath) b

/descendant::b/parent::a/child::c T 2 1]

q

for xin (q) do {

!

letn=q; ...

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

@ Programs that manipulate

/J\
XML trees / - 9
@ Analysis:) €
9
)

o tree types (XML Schemas,
DTDs)
e queries (XPath) b

/descendant::b/parent::a/child::c T 2 1]

q

letn=q; ...

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

@ Programs that manipulate

/J\
XML trees / - 9
@ Analysis:) €
9
)

o tree types (XML Schemas,
DTDs)
e queries (XPath) b

/descendant::b/parent::a/child::c &T Z /child::a/child::c

q Qoptimised

for xin (q) do {

!

letn=q; ...

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

/
@ Programs that manipulate /’)\
XML trees /‘9\ J)
@ Analysis:) o\ €
o tree types (XML Schemas, a)
9

DTDs)
@ queries (XPath)

/descendant::b/parent::a/child::c &T £ /child::a/child::c

q Qoptimised

for xin (q) do {

} QQOptimised

letn=q; ...

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

@ Programs that manipulate

/0\
XML trees Q\b\g
. 4
@ Analysis: Q €
G/O

o tree types (XML Schemas,
DTDs)
@ queries (XPath)

/descendant::b/parent::a/child::c &T £ /child::a/child::c

q Qoptimised

for xin (q) do {

} QQOptimised

letn=q; ...

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

@ Programs that manipulate

/0\
XML trees Q\b\g
. 4
@ Analysis: Q €
G/O

o tree types (XML Schemas,
DTDs)
@ queries (XPath)

/descendant::b/parent::a/child::c &T £ /child::a/child::c

q Qoptimised

for xin (q) do {

} QQOptimised

letn=q; ...

?
G N Grorbidden 7# 0

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

@ Programs that manipulate

/0\
XML trees Q\b\g
. 4
@ Analysis: Q €
G/O

o tree types (XML Schemas,
DTDs)
@ queries (XPath)

/descendant::b/parent::a/child::c &T £ /child::a/child::c

q Qoptimised

for xin (q) do {
qﬁ Gforbidden 7é @ - \ } Qoptimised
forbidden access! le n._.

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

@ Programs that manipulate

/0\
XML trees Q\b\g
. 4
@ Analysis: Q €
G/O

o tree types (XML Schemas,
DTDs)
@ queries (XPath)

/descendant::b/parent::a/child::c &T £ /child::a/child::c

q Qoptimised

for xin (q) do {
qﬁ Gforbidden 7é @ - \ } Qoptimised
forbidden access! le n._.

@ Before: complexity too high, implementations out of scope...

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Safety and Efficiency of Programs

@ Programs that manipulate

/0\
XML trees Q\b\g
. 4
@ Analysis: Q €
G/O

o tree types (XML Schemas,
DTDs)
@ queries (XPath)

/descendant::b/parent::a/child::c &T £ /child::a/child::c

q Qoptimised

for xin (q) do {
qﬁ Gforbidden 7é @ - \ } Qoptimised
forbidden access! le n._.

@ Before: complexity too high, implementations out of scope...
@ This paper: optimal complexity + efficient implementation

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

XPath Static Analysis Tasks

@ XPath typing

@ XPath query comparisons
e query containment, emptiness, overlap, equivalence

Main Applications

@ Static analysis of host languages: error detection, optimization
(static type-checkers, optimizing compilers)

@ Checking integrity constraints in XML databases

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Challenges

@ Query comparisons and typing are undecidable for the complete
XPath language l

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Challenges

@ Query comparisons and typing are undecidable for the complete
XPath language l

Open Questions

@ What are the largest XPath fragments with decidable static
analysis?
@ Which fragments can be effectively decided in a compiler?

@ |s there a generic algorithm able to solve all related XPath
decision problems?

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Challenges

@ Query comparisons and typing are undecidable for the complete
XPath language l

Open Questions

@ What are the largest XPath fragments with decidable static
analysis?
@ Which fragments can be effectively decided in a compiler?

@ |s there a generic algorithm able to solve all related XPath
decision problems?

@ Considered XPath operators and their combination (e.g.,
multidirectional navigation, recursion)

@ Checking properties on a possibly infinite set of XML documents
@ Very high computational complexity

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

The Logical Approach: Overview

@ Find an appropriate logic for reasoning on XML trees
@ Formulate the problem into the logic and test satisfiability

9%

XPath Translation
Fragment a
counter-
—&=®) Yes/No |
. Satisfiability example
Schemas s LOgIC Testing
Algorithm
S Translation

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

The Logical Approach: Overview

@ Find an appropriate logic for reasoning on XML trees
@ Formulate the problem into the logic and test satisfiability

q

XPath 2 Translation
Fragment a
counter-
—&=®) Yes/No |
. Satisfiability example
Schemas ?s Logic Testing
Algorithm
S Translation

Critical Aspects

@ The logic must be expressive enough
@ The algorithm must be effective in practice for XML translations

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Models for XML Documents

@ Finite ordered binary trees, one label per node
@ Bijective encoding of unranked trees as binary trees:

\\0\\
777777777777777777777 \ 1\ O
O O \ \ \
[o FX QR
. . [J \ \\ \
77777777/1\5———:——— N 3\\. \\. . \\
,2,,7/?,,,:.77,?,\,,,, N \ \\.\\ A
3070 o o AN
¥ - 7 : ~\\ Lo \
‘\\ O\\
¥

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Formulas of the £, Logic

@ Programs « € {1,2,1,2} for 1/‘)
navigating binary trees (@ = «) J J
Lidp,p = formula
T true
| o | -o atomic prop (negated)
| ® | ©® starting context (negated)
| eV disjunction
| oAY conjunction
| () | —{a)T existential (negated)
| X variable
| X unary fixpoint
| wuXipiingy n-ary fixpoint
@ Closed formulas)

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a
inL,:

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a

inL,: a

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a

inL,: a

9
"

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a

inL,: a

"
9
o

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a

inL,: a

"
9
o

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a
in L, an(puzZ.(2)®v(2)2)

@ uZ.p : finite recursion
@, uZ . fini ursi

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a/preceding-sibling::b
in L, an(puzZ.(2)®v(2)2)

@ uZ.p : finite recursion
@) uZ .o fini ursi

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a/preceding-sibling::b
inL,:bApY.(2)(aA(pZ.(2)®V(2)2Z))V(2)Y]

@ 1Z.p : finite recursion
\®) pHe

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a/preceding-sibling::b
inL,:bApY.(2)(aA(pZ.(2)®V(2)2Z))V(2)Y]

\@) @ uZ.p : finite recursion
@ {1,2} required for forward axes!
° @ {1,2} required for reverse axes!
Q @ Converse programs are crucial

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a/preceding-sibling::b
inL,:bApY.(2)(aA(pZ.(2)®V(2)2Z))V(2)Y]

\@) @ uZ.p : finite recursion
@ {1,2} required for forward axes!
° @ {1,2} required for reverse axes!
Q @ Converse programs are crucial

@ Almost full XPath can be
\9 translated (only variable counting
constraints and data value

0 comparisons left)

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a/preceding-sibling::b
inL,:bApY.(2)(aA(pZ.(2)®V(2)2Z))V(2)Y]

\@) @ uZ.p : finite recursion
@ {1,2} required for forward axes!
° @ {1,2} required for reverse axes!
Q @ Converse programs are crucial

@ Almost full XPath can be
\9 translated (only variable counting
constraints and data value

0 comparisons left)
@ Schemas can also be captured!

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Satisfiability-Testing Algorithm: Principles

Search for a Tree that Satisfies ¢

@ ¢ truth status can be determined from a few of its subformulas
@ A node is a -type (conjunction of formulas)

Bottom-up Construction of a Tree of ¢-types

@ A set T of ¢-types is repeatedly updated (least fixpoint
computation)
o Initially: @
e Step 1: all possible leaves are added
e Step i : all possible parent nodes of current nodes are added

v

Termination

@ If ¢ is present in some node, then) is satisfiable

@ Otherwise, the algorithm terminates when no more node can be
added

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Correctness & Complexity

The satisfiability problem for a formula ¢ € L,, is decidable in time
290" where n is the size of .

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Experimental Results

@ Able to handle such a large XPath fragment
@ Able to handle schemas (regular tree types)

What Can Now Be Done

Time (s) | Solved Problems

<05 Comparisons of XPath queries (XPathmark) without tree types

<1 Medium tree types involved (=~ 30 symbols, ~ 20 variables)
Example: W3C SMIL

<3 Large tree types involved (=~ 100 symbols, =~ 400 variables)
Example: W3C XHTML

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Summary and Perspectives

A New Tree Logic

@ Best balance known between expressiveness/complexity
@ Translation of main XML concepts: linear
@ Implementation already fairly efficient for static analysis

Future Work

@ Extensions of the logic

e Decidable data-value comparisons
e Decidable counting constraints

@ Type inference for XSLT/XQuery without output type annotations
@ More applications in program analysis?

e L, is as expressive as MSO, and the solver is orders of magnitude
faster than MONA...

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

Thank you!

pierre.geneves@epfl.ch

P. Geneves, EPFL Efficient Static Analysis of XML Paths and Types

