
A System for the Static Analysis of XPath

PIERRE GENEVÈS and NABIL LAYAÏDA

INRIA Rhône-Alpes

XPath is the standard language for navigating XML documents and returning a set of matching

nodes. We present a sound and complete decision procedure for containment of XPath queries,

as well as other related XPath decision problems such as satisfiability, equivalence, overlap, and

coverage. The considered XPath fragment covers most of the language features used in practice.

Specifically, we propose a unifying logic for XML, namely, the alternation-free modal μ-calculus

with converse. We show how to translate major XML concepts such as XPath and regular XML

types (including DTDs) into this logic. Based on these embeddings, we show how XPath decision

problems, in the presence or absence of XML types, can be solved using a decision procedure for

μ-calculus satisfiability. We provide a complexity analysis of our system together with practical

experiments to illustrate the efficiency of the approach for realistic scenarios.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information

Search and Retrieval; H.2.4 [Database Management]: Systems—Query processing; D.3.1 [Pro-
gramming Languages]: Formal Definitions and Theory—Semantics

General Terms: Algorithms, Languages, Standardization, Theory

Additional Key Words and Phrases: Containment, equivalence, logic, query, XML, XPath

1. INTRODUCTION

XPath [Clark and DeRose 1999] is the standard declarative language for query-
ing an XML tree and returning a set of nodes. It is increasingly popular due to
its expressive power and compact syntax. These advantages have given XPath
a central role both in other key XML specifications and XML applications. It
is used in XQuery as a core query language; in XSLT as a node selector in
transformations; in XML Schema to define keys; and in XLink and XPointer to
reference portions of XML data. XPath is also used in many applications, such
as update languages [Sur et al. 2004] and XML access control [Fan et al. 2004].

Several XPath decision problems arise naturally in these use cases. The
most basic decision problem for a query language is satisfiability [Benedikt
et al. 2005]: whether or not an expression yields a nonempty result. XPath

Author’s addresses: P. Genevès, N. Layaı̈da, INRIA Rhône-Alpes, 655 Avenue de l’Europe, Mont-

bonnot, 38334 St Ismier Cedex, France; email: Pierre.geneves@inria.fr.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that the copies are not made or distributed for profit or direct

commercial advantage, and that copies show this notice on the first page or initial screen of a

display along with the full citation. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, or

to post on servers, to redistribute to lists, or to use any component of this work in other works

requires prior specific permission and/or a fee. Permission may be requested from Publications

Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax: +1 (212) 869-0481,

or permission@acm.org.
C© 2006 ACM 1046-8188/06/1000-0475 $5.00

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006, Pages 475–502.

476 • P. Genevès and N. Layaı̈da

satisfiability is important for optimization of host language implementations:
For instance, if we can decide at compile-time that a query is not satisfiable,
then subsequent bound computations can be avoided. Another basic decision
problem is that of XPath equivalence: whether or not two queries always re-
turn the same result. It is important for reformulation and optimization of the
query itself [Genevès and Vion-Dury 2004a], which aim at enforcing operational
properties, while preserving semantic equivalence [Abiteboul and Vianu 1999;
Levin and Pierce 2005]. These two decision problems are reducible to XPath
containment: whether or not, for any tree, the result of a particular query is
included in the result of another. Query containment is itself critical for the
static analysis of XML specifications and especially for type-checking transfor-
mations [Martens and Neven 2004; Tozawa 2001]. Such applications introduce
XPath decision problems in the presence of XML types such as DTDs [Bray et al.
2004] or XML schemas [Fallside and Walmsley 2004]. Other decision problems
needed in applications include, for example, XPath overlap (whether two ex-
pressions select common nodes) and coverage (whether nodes selected by an
expression are always contained in the union of the results selected by several
other expressions).

In the literature, much attention has been paid to classifying the containment
problem for simple XPath subfragments in complexity classes. This allowed the
identification of subsets of XPath for which the containment can be efficiently
decided.

In this article, our goal is to describe sound, complete, and efficient decision
procedures that are usable in practice for a large XPath fragment in the pres-
ence or absence of XML types. We first briefly introduce the XPath language,
and present the approach and outline of the article.

1.1 Introduction to XPath

XPath [Clark and DeRose 1999] has been introduced by the W3C as the stan-
dard query language for retrieving information in XML documents. It allows
navigation in XML trees and returning a set of matching nodes. In their simplest
form, XPath expressions look like “directory navigation paths.” For example, the
XPath

/book/chapter/section

navigates from the root of a document (designated by the leading slash “/”)
through the top-level “book” element to its “chapter” child elements and on to its
“section” child elements. The result of the evaluation of the entire expression is
the set of all the “section” elements that can be reached in this manner, returned
in the order they occurred in the document. At each step in the navigation, the
selected nodes for this step can be filtered using qualifiers. A qualifier is a
Boolean expression between brackets that can test path existence. So, if we ask
for

/book/chapter/section[citation]

then the result is all the “section” elements that have a least one child element
named “citation.” The situation becomes more interesting when combined with

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

A System for the Static Analysis of XPath • 477

self

ancestor

descendant

pr
ec

ed
in

g

follow
ing

following-sibling

preceding-sibling

child

parent

Fig. 1. XPath axes partition from context node.

XPath’s capability of searching along “axes” other than the shown “children of”
axis. Indeed, the aforementioned XPath is a shorthand for

/child::book/child::chapter/child::section[child::citation]

where it is made explicit that each path step is meant to search the “child” axis
containing all children of the previous context node. If we instead asked for

/child::book/descendant::*[child::citation]

then the last step selects nodes of any kind that are among the descendants of
the top element “book” and have a “citation” subelement.

Previous examples are all absolute XPath expressions. The meaning of a
relative expression (without the leading “/”) is defined with respect to a context
node in the tree. A key to XPath success is its compactness due to the powerful
navigation made possible by the various axes. Starting from a particular context
node in a tree, every other node can be reached. Axes define a partitioning of
a tree from any context node. Figure 1 illustrates this on a sample tree. More
informal details on the complete XPath standard can be found in the W3C
specification [Clark and DeRose 1999].

A variety of factors contribute to the complexity of XPath decision problems,
such as the operators allowed in XPath queries and their combination. We
present here the common distinctions between XPath fragments found in the
literature, taken from Benedikt et al. [2005]:

—positive vs. nonpositive: depending whether the negation operator is con-
sidered inside qualifiers;

—downward vs. upward: depending whether queries specify downward or up-
ward traversal of the tree, or both;

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

478 • P. Genevès and N. Layaı̈da

—recursive vs. nonrecursive: depending whether XPath transitive closure
axes (e.g., “descendant” or “ancestor”) are considered;

—qualified vs. nonqualified: depending whether queries allow filtering quali-
fiers; and

—with vs. without data values: depending whether comparisons of data values
expressing joins are allowed.

From the results of Benedikt et al. [2005] and Schwentick [2004], we know that
the combination of some previous factors with data values may lead to undecid-
ability of decision problems such as containment. In the remaining part of the
article, we focus on a large XPath fragment covering all previous factors, except
data values. This fragment, detailed in Section 3, is the largest considered so
far in the literature, and covers most features of XPath 1.0.1

1.2 Approach and Outline

In this article, we propose alternation-free modal μ-calculus with converse as
the appropriate logic for effectively solving XPath decision problems in the
presence or absence of XML types. We show how XPath can be linearly trans-
lated into μ-calculus. We also show how to embed regular tree types (including
DTDs) in the μ-calculus. We express XPath decision problems (containment,
satisfiability, equivalence, overlap, coverage) as formulae in this logic. We use
an EXPTIME decision procedure for μ-calculus satisfiability to solve the gen-
erated formula and construct relevant example and/or counter-example XML
trees. We provide experimental results which shed light, for the first time, on
the cost of solving XML decision problems in practice. The system has been
fully implemented [Genevès and Layaı̈da 2006] and can be used for the static
analysis of XML specifications.

The remaining part of the article is organized as follows: in Section 2 we
introduce the logic we propose for reasoning on XML trees; in Section 3 we
describe the translation of XPath queries into this logic; Section 4 embeds reg-
ular XML types into the logic. Based on these translations, Section 5 explains
how to formulate and solve the considered decision problems. We present an
implementation of the system, along with practical experiments, in Section 6,
before discussing related work in Section 7 and concluding in Section 8.

2. A LOGIC FOR XML

In this section we introduce a specific variant of the modal μ-calculus as a
formalism for reasoning on XML trees.

2.1 XML Documents and Finite Binary Trees

We consider an XML document as a finite ordered and labeled tree of unbounded
depth and arity. Since there is no a priori bound on the number of children

1The fragment also includes two extensions from the forthcoming XPath 2.0 [Berglund et al. 2006]

language: qualified paths (e.g., (p)[q]), instead of XPath 1.0 qualified steps (e.g., a :: n[q]), and path

intersection (p1 ∩ p2).

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

A System for the Static Analysis of XPath • 479

Fig. 2. Unranked and binary tree representations.

of a node, such a tree is therefore unranked [Neven 2002b]. Tree nodes are
labeled with symbols taken from a countably infinite alphabet �. There is a
straightforward isomorphism between sequences of unranked and binary trees
[Hosoya et al. 2005; Neven 2002a]. In order to describe this, we first define the
set T n

� of unranked trees:

T n
� � t ::= σ (h),

where σ ∈ � and h is a hedge, that is, a sequence of unranked trees, defined as
follows:

H� � h ::= σ (h), h′|()
A binary tree t is either a σ -labeled root of two subtrees (σ ∈ �) or the empty
tree:

T 2
� � t ::= σ (t, t ′)|ε

Unranked trees can be translated into binary trees with the following function:

β(·) : H� → T 2
�

β(σ (h), h′) = σ (β(h), β(h′))

β(()) = ε

The inverse translation function converts a binary tree into a sequence of un-
ranked trees:

β−1(·) : T 2
� → H�

β−1(σ (t, t ′)) = σ (β−1(t)), β−1(t ′)

β−1(ε) = ()

For example, Figure 2 illustrates how a sample unranked tree is mapped to its
binary representation and vice versa.

Note that the translation of a single unranked tree results in a binary tree
of the form σ (t, ε). Reciprocally, the inverse translation of such a binary tree al-
ways yields a single unranked tree. When modeling XML, we therefore restrict
our attention to binary trees of the form σ (t, ε), without loss of generality.

We now introduce the logic we propose for reasoning over these structures.

2.2 The μ-Calculus

The propositional μ-calculus is a propositional modal logic extended with least
and greatest fixpoint operators [Kozen 1983]. A signature � for the μ-calculus

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

480 • P. Genevès and N. Layaı̈da

Fig. 3. Semantics of the μ-calculus.

consists of a set Prop of atomic propositions, a set V ar of propositional variables,
and a set FProg of atomic programs. In the XML context, atomic propositions
represent the symbols of the alphabet � used to label XML trees. Atomic pro-
grams allow navigation in trees.

The μ-calculus with converse2 [Vardi 1998] augments propositional μ-
calculus by associating with each atomic program a its converse ā. A pro-
gram α is either an atomic program or its converse. We note Prog the set
FProg ∪ {ā | a ∈ FProg}. This is the only difference between the propositional μ-
calculus that lacks converse programs. It is important to note that the addition
of converse programs preserves the EXPTIME upper bound for the satisfiability
problem [Vardi 1998].

The set Lμ of formulae of the μ-calculus with converse over the signature �

is defined as follows:

Lμ � ϕ ::= 	 | ⊥ | p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 |
[α] ϕ | 〈α〉 ϕ | X | μX .ϕ | νX .ϕ

,

where p ∈ Prop, X ∈ Var, and α is a program. Note that X should not occur
negatively in μX .ϕ and in νX .ϕ.

The semantics of the full μ-calculus is given with respect to a Kripke structure
K = 〈W, R, L〉, where W is a set of nodes, R : Prog → 2W × W assigns to each
atomic program a transition relation over W , and L is an interpretation function
that assigns to each atomic proposition a set of nodes.

The formal semantics function [·]K
V shown in Figure 3 defines the semantics

of a μ-calculus formula in terms of a Kripke structure K and valuation V . A
valuation V : Var → 2W maps each variable to a subset of W . For a valuation
V , variable X , and set of nodes W ′ ⊆ W , V [X /W ′] denotes the valuation that
is obtained from V by assigning W ′ to X .

Note that if ϕ is a sentence (i.e., all propositional variables occurring in ϕ are
bound), then no valuation is required. For a node w ∈ W and sentence ϕ, we
say that ϕ holds at w in K , denoted K , w |= ϕ iff w ∈ [ϕ]K .

The two modalities 〈a〉ϕ (possibility) and [a] ϕ (necessity) are operators for
navigating the structure.

2The μ-calculus with converse is also known as the full μ-calculus, or alternatively, as the two-way
μ-calculus in the literature.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

A System for the Static Analysis of XPath • 481

Fig. 4. Dualities for negation normal form.

The syntax of Lμ formulae as given previously is in fact redundant. Actually,
we only have to deal with a subset of Lμ composed of formulae in negation
normal form. We say that a formula is in negation normal form if and only
if all negations in the formula appear only before atomic propositions. Every
formula is equivalent to a formula in negation normal form [Kozen 1983], which
can be obtained by expanding negations using De Morgan’s rules, together with
standard dualities for modalities and fixpoints (see Figure 4). For readability
purposes, the translations of XPath expressions given in Section 3 are not given
in negation normal form.

For reasoning on XML trees, we are in fact interested in a specific subset
of Lμ, namely, the alternation-free modal μ-calculus with converse over finite
binary trees.

We recall that a Lμ formula ϕ in negation normal form is alternation-free
whenever the following condition holds3: if μX .ϕ1 (respectively, νX .ϕ1) is a
subformula of ϕ and νY .ϕ2 (respectively, μY .ϕ2) is a subformula of ϕ1, then X
does not occur freely in ϕ2.

The following section now introduces the additional restrictions of Lμ related
to finite binary trees.

2.3 XML Constraints on Kripke Structures

In this section, we restrict the satisfiability problem of Lμ over Kripke struc-
tures to the satisfiability problem over finite binary trees.

The propositional μ-calculus has the finite tree model property: A formula
that is satisfiable is also satisfiable on a finite tree [Kozen 1988]. Unfortunately,
the introduction of converse programs causes the loss of the finite model prop-
erty [Vardi 1998]. Therefore, we need to reinforce the finite model property and
introduce some others to ensure that we work on finite binary trees encoding
XML structures.

First, each XML node has, at most, one �-label, that is, p ∧ p′ never holds
for distinct atomic propositions p and p′. This can be easily incorporated in a
μ-calculus satisfiability solver.

Second, for navigating binary trees, we only use two atomic programs 1 and
2, and their associated relations R(1) =≺fc and R(2) =≺ns, whose meaning
is to respectively connect a node to its left child and right child. For any
(x, y) ∈ W × W , x ≺fc y holds iff y is the left child of x (i.e., the first child in
the unranked tree representation) and x ≺ns y holds iff y is the right child of

3For instance, νX .(μY .
〈
1
〉
Y ∧ p) ∨ 〈

2
〉
X is alternation-free, but νX .(μY .

〈
1
〉
Y ∧ X) ∨ p is not, since

X bound by ν appears freely in the scope of μY .

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

482 • P. Genevès and N. Layaı̈da

x in the binary tree representation (i.e., the next sibling in the unranked tree
representation).

For each atomic program a ∈ {1, 2}, we define R(a) to be the relational inverse
of R(a), that is, R(a) = {(v, u) : (u, v) ∈ R(a)}. We thus consider programs
α ∈ {1, 2, 1, 2} inside modalities for navigating downward and upward in trees.

We now define restrictions for a Kripke structure to form a finite binary
tree. A Kripke structure t = 〈W, R, L〉 is a finite binary tree if it satisfies the
following conditions:

(1) W is finite;

(2) the set of nodes W , together with the accessibility relation ≺fc ∪ ≺ns, define
a tree; and

(3) ≺fc and ≺ns are partial functions, that is, for all m ∈ W and j ∈ {1, 2}, there
is at most one m j ∈ W such that (m, m j) ∈ R(j).

We say that a finite binary tree t = 〈W, R, L〉 satisfies ϕ if t, r |= ϕ, where r ∈ W
is the root of the tree t.

For accessing the root, we use the Lμ formula

ϕroot =
[
1
]
⊥ ∧

[
2
]
⊥,

which selects a node, provided it has no parent.
For ensuring finiteness, we rely on König’s lemma, which states that a

finitely branching infinite tree has some infinite path, or in other words, a
finitely branching tree in which every branch is finite is finite. The expres-
sion νX .

〈
1
〉
X ∨ 〈

2
〉
X is only satisfied by structures containing infinite or cyclic

paths. To prevent the existence of such paths, we negate the previous formula
and, by propagating negation using the rules presented in Figure 4, we obtain:

ϕft = μX .
[
1
]

X ∧ [
2
]

X

Here, ϕft states that all descending branches are finite from the current context
node (ϕft is vacuously satisfied at the leaves). In our case, we need ϕft to hold at
the root (i.e., ϕroot ∧ ϕft must hold) in order to ensure that we work with a finite
structure. This is for condition (1) to be satisfied.

We still need to enforce (2) and (3). We do this by rewriting existential modal-
ities such that if a successor is supposed to exist, then there exists at least one,
and if there are many, all verify the same property. This is a way to overcome
the difficulty that in μ-calculus, we cannot naturally express a property like “a
node has exactly n successors.” Technically, we denote by ϕFBT the formula ϕ

where all occurrences of 〈α〉 ψ are replaced by 〈α〉 	∧[α] ψFBT. This replacement
is enough to enforce conditions (2) and (3).

PROPOSITION 2.1. A Lμ formula ϕ is satisfied by a finite binary tree model if
and only if the formula ϕroot ∧ ϕft ∧ ϕF BT is satisfied by a Kripke structure.

The proof of the “if” part iteratively constructs a tree model and proceeds by
induction on the structure on ϕ. The “only if” part is almost immediate [Tanabe
et al. 2005].

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

A System for the Static Analysis of XPath • 483

Proposition 2.1 gives the adequate framework for formulating decision prob-
lems on XML structures in terms of a μ-calculus formula.

3. LOGICAL INTERPRETATION OF XPATH QUERIES

We consider a large and realistic XPath fragment which includes negation, both
downward and upward navigation, recursion, union, intersection, and quali-
fiers. The abstract syntax of our XPath fragment is shown next:

LXPath e ::= /p | p | e1 � e2 | e1 ∩ e2

Path p ::= p1/p2 | p[q] | a::n

Qualifier q ::= q and q | q or q | not q | p

Axis a ::= child | descendant | self | parent | ancestor | following

| preceding | descendant-or-self | ancestor-or-self

| preceding-sibling | following-sibling

NodeTest n ::= σ | ∗
XPath expressions are directly used for querying unranked XML trees. We first
recall XPath denotational semantics over unranked trees [Wadler 2000]. The
evaluation of an XPath query returns a set of nodes that is reachable from a
context node x in a tree t. The formal semantics functions Se and Sp define the
set of nodes respectively returned by expressions and paths:

Se[[·]]·· : LXPath × Node × T n
� −→ Set(Node)

Se[[/p]]t
x = Sp[[p]]t

root ()

Se[[p]]t
x = Sp[[p]]t

x

Se[[e1 � e2]]t
x = Se[[e1]]t

x ∪ Se[[e2]]t
x

Se[[e1 ∩ e2]]t
x = Se[[e1]]t

x ∩ Se[[e2]]t
x

Sp[[·]]·· : Path × Node × T n
� −→ Set(Node)

Sp[[p1/p2]]t
x = {x2 | x1 ∈ Sp[[p1]]t

x ∧ x2 ∈ Sp[[p2]]t
x1

}
Sp[[p[q]]]t

x = {x1 | x1 ∈ Sp[[p]]t
x ∧ Sq[[q]]t

x1
}

Sp[[a::σ]]t
x = {x1 | x1 ∈ Sa[[a]]t

x ∧ name(x1) = σ }
Sp[[a::∗]]t

x = {x1 | x1 ∈ Sa[[a]]t
x}

The function Sq defines the semantics of qualifiers that basically state the ex-
istence (or absence) of one or more paths from a context node x:

Sq[[·]]·· : Qualifier × Node × T n
� −→ Boolean

Sq[[q1 and q2]]t
x = Sq[[q1]]t

x ∧ Sq[[q2]]t
x

Sq[[q1 or q2]]t
x = Sq[[q1]]t

x ∨ Sq[[q2]]t
x

Sq[[not q]]t
x = ¬ Sq[[q]]t

x

Sq[[p]]t
x = Sp[[p]]t

x �= ∅
ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

484 • P. Genevès and N. Layaı̈da

Fig. 5. XPath translation example.

Eventually, the function Sa gives the denotational semantics of axes:

Sa[[·]]·· : Axis × Node × T n
� −→ Set(Node)

Sa[[child]]t
x = children(x)

Sa[[parent]]t
x = parent(x)

Sa[[descendant]]t
x = children+(x)

Sa[[ancestor]]t
x = parent+(x)

Sa[[self]]t
x = {x}

Sa[[descendant-or-self]]t
x = Sa[[descendant]]t

x ∪ Sa[[self]]t
x

Sa[[ancestor-or-self]]t
x = Sa[[ancestor]]t

x ∪ Sa[[self]]t
x

Sa[[preceding]]t
x = { y | y � x} \ Sa[[ancestor]]t

x
Sa[[following]]t

x = { y | x � y} \ Sa[[descendant]]t
x

Sa[[following-sibling]]t
x = { y | y ∈ child(parent(x)) ∧ x � y}

Sa[[preceding-sibling]]t
x = { y | y ∈ child(parent(x)) ∧ y � x}

in which root(), children(x), and parent(x) are primitives for navigating un-
ranked trees, � is the ordering relation (x � y holds if and only if the node
x is before the node y in depth-first traversal order of the tree), and name() is
the mean for accessing the labeling of the tree.

3.1 A Translation into the μ-Calculus

We now explain how an XPath expression can be translated into an equiva-
lent formula in Lμ over binary trees. The translation adheres to XPath formal
semantics in the sense that the translated formula holds for nodes which are
selected by the XPath query. Navigation, as performed by XPath, in unranked
trees is thus translated in terms of navigation in the binary tree representation.

For example, Figure 5 gives the intuition of the translation of the XPath ex-
pression “child::a[child::b].” In an unranked tree, this expression selects all “a”
child nodes of a given context which have at least one “b” child. The translated
Lμ formula holds for “a” nodes, which are selected by the expression. By nav-
igating upward in the binary tree from these nodes (specifically, any number
of steps upward from a right child, and then once upward from a left child),
we must reach the initial context. Then, starting back from the candidate “a”
nodes, we must navigate downward in the tree in order to verify the existence
of a “b” child.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

A System for the Static Analysis of XPath • 485

Fig. 6. Translation of XPath axes.

Fig. 7. Logical correspondences in terms of the early CPDL operators.

Note that without converse programs, we would have been unable to dif-
ferentiate selected nodes from nodes whose existence is tested. This is be-
cause we must state properties on both the ancestors and descendants of the
selected node. Therefore, equipping the Lμ logic with converse programs is
crucial for supporting XPath.4 Logics without converse programs may only be
used for solving XPath satisfiability, but not other decision problems, such as
containment.

3.1.1 Logical Interpretation of Axes. We first translate navigational prim-
itives, namely, XPath axes. The translation is formally specified in Figure 6 as
a translation function noted “A→[[·]](·)” which takes an XPath axis as input, and
returns its translation in μ-calculus in terms of the μ-calculus formula given as
a parameter to allow further composition. A→[[a]](χ) holds for all nodes that can
be accessed through the axis a from some node verifying χ . The formal param-
eter χ allows us to express the composition of formulae needed for translating
path composition.

For readers more familiar with PDL and CPDL (PDL with converse pro-
grams), both defined in Fischer and Ladner [1979], we give a correspondence
of notations in Figure 7.

4We may ask whether it is possible to eliminate upward navigation at the XPath level. It is well-

known that such XPath rewritings may cause exponential blow-ups of expression sizes.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

486 • P. Genevès and N. Layaı̈da

Fig. 8. Translation of expressions.

Fig. 9. Translation of paths.

Fig. 10. Translation of qualifiers.

3.1.2 Logical Interpretation of Expressions. The translation of XPath ex-
pressions into μ-calculus is given in Figure 8. This is formally expressed as a
translation function noted “E→[[·]](·)” which takes an XPath expression as in-
put, and a μ-calculus formula as a parameter that indicates the context from
which the expression is applied. Absolute XPath expressions are interpreted
from the root (selected by the μ-calculus expression ϕroot), whereas relative ex-
pressions are interpreted relative to any context node. We use a fresh atomic
proposition named ϕcontext for distinguishing context nodes.

The translation of expressions relies on the translations of paths shown in
Figure 9. XPath’s most essential construct p1/p2 translates into formula compo-
sition in Lμ such that the resulting formula holds for all nodes accessed through
p2 from those nodes accessed from χ by p1.

The translation of the branching construct p[q] significantly differs. The re-
sulting formula must hold for all nodes that can be accessed through p and
from which q holds (see the XPath denotational semantics given previously in
Section 3). To preserve semantics, the translation of p[q] stops the “select-
ing navigation” to those nodes reached by p, then filters them, depending on
whether q holds. We express this by introducing a dual formal translation func-
tion for XPath qualifiers, noted Q←[[·]](·) (and shown in Figure 10), which per-
forms “filtering” instead of navigation. Specifically, P→[[·]](·) can be seen as
the “navigational” translating function: The translated formula holds for tar-
get nodes of the given path. On the other hand, Q←[[·]](·) can be seen as the

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

A System for the Static Analysis of XPath • 487

Fig. 11. Symmetry of axes inside qualifiers.

“filtering” translating function: It states the existence of a path, without mov-
ing to its result. The translated formula Q←[[q]](χ) (respectively, P←[[p]](χ))
holds for nodes from which there exists a qualifier q (respectively, a path p)
leading to a node verifying χ .

XPath translation into μ-calculus is based on these two translating “modes,”
the first being used for paths and the second for qualifiers. Note that when-
ever the “filtering” mode is entered, it will never be left. This differs from the
denotational semantics given previously in Section 3, in which the formal se-
mantics functions for paths and qualifiers are mutually recursive (and cause
naive implementations to be unnecessarily complex, as pointed out by Gottlob
et al. [2005]). Translations of paths inside qualifiers are also given in Figure 10.
They use the specific translations for axes inside qualifiers, based on XPath
symmetry, shown in Figure 11.

The cost of the translation is linear in length of the XPath expression, since
there is no duplication of subformulae of arbitrary length in the formal transla-
tions. Formulae in which the formal parameter χ appears twice (see Figures 8
and 10) do not cause such duplication, since the value of χ is either ϕcontext or
ϕroot constants.

Note that the translation of an XPath expression is a sentence. Indeed,
for absolute XPath expressions, the translation starts from the root (the
initial formal parameter is ϕroot). For relative expressions, the translated
formula is closed by the initial formal parameter ϕcontext modeling context
nodes.

We can prove that the translatedLμ formula over binary trees is semantically
equivalent to the original XPath expression over corresponding unranked trees.
For instance, if we relate our translations in Lμ to the XPath denotational
semantics given previously in Section 3:

PROPOSITION 3.1. Let T ′ be an XML tree, and e an XPath expression. Then,
for all y ′ ∈ T ′, the following are equivalent:

—There exists x ′ ∈ T ′ such that y ′ ∈ Se[[e]]T ′
x ′ ,

—T, y |= ϕroot ∧ ϕ f t ∧ (E→[[e]](ϕcontext))
FBT

where y is the counterpart of y ′ in the binary tree representation T of T ′.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

488 • P. Genevès and N. Layaı̈da

The proof is done by a straightforward structural induction that “peels off”
the compositional layers of each set of rules. This result links XPath decision
problems in the absence of XML types to satisfiability in Lμ. We now show how
XML types can also be translated in the μ-calculus.

4. XML TYPES

XML types describe structural constraints for XML documents. Several for-
malisms exist for describing classes of XML documents (see Murata et al. [2005]
for an overview). In this article, we translate the class of regular tree languages
that gathers all widely used formalisms for describing types of XML documents
(including the well-known DTDs and XML schemas) into Lμ over binary trees.

We begin with the syntactic definition of tree type expressions. We define a
type T as follows:

L CFT � T ::= ∅ | () | X | l [T] | T1, T2 | T1 � T2 |,
let (X i → Ti)1≤i≤m in T

where l ∈ � and X ∈ TVar, assuming that TVar is a countably infinite set of
type variables. Abbreviated type expressions can be defined as follows:

T? = () � T
T∗ = letX → T in T, X � ()
T+ = T, T∗

Given an environment θ of type-variable bindings, the semantics of tree types
is given by the denotation function [[·]]θ :

[[·]]· : L CFT × (TVar → 2T n
�) → 2T n

�

[[∅]]θ = ∅
[[()]]θ = {()}
[[X]]θ = θ (X)

[[l [T])]]θ = {l ′(t) | l ′ ≺ l ∧ t ∈ [[T]]θ }
[[T1, T2]]θ = {t1, t2 | t1 ∈ [[T1]]θ ∧ t2 ∈ [[T2]]θ },
[[T1 � T2]]θ = [[T1]]θ ∪ [[T2]]θ

[[let (X i → Ti)1≤i≤m in T]]θ = [[T]] lfp(S)

where ≺ is a global subtagging relation: a reflexive and transitive relation on
labels,5 and S(θ ′) = θ [X i �→ [[Ti]]θ ′]i≥1. Note that each function S is monotone,
according to the ordering ⊆ on TVar → 2T n

� , and thus has a least fixpoint lfp(S).
Types as previously defined actually correspond to arbitrary context-free tree

types, for which the decision problem for inclusion is known to be undecidable
[Hopcroft et al. 2000]. We impose the additional restriction used in Hosoya
et al. [2005] to reduce the expressive power of considered types so that they
correspond to regular tree languages. The restriction consists in a simple syn-
tactic condition that allows unguarded (i.e., not enclosed by a label) recursive

5Subtagging goes beyond the expressive power of DTDs, but a similar notion called “substitution

groups” exists in XML schemas (see Hosoya et al. [2005] for more details on subtagging).

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

A System for the Static Analysis of XPath • 489

uses of variables, but restricts them to tail positions.6 This condition ensures
regularity, and we name LRT the resulting class of regular tree languages.
From an XML point of view, regular tree types form a superset of standards,
such as XML schemas and DTDs. We further detail the connection with the
widely used DTD standard.

4.1 Document Type Definitions

As defined in the W3C recommendation, DTDs [Bray et al. 2004] are local tree
grammars7 which are strictly less expressive than regular tree types. In XML
terminology, a type expression is often called the content model. DTD content
models are described by the following syntax:

T ::= l | T1 � T2 | T1, T2 | T? | T ∗ | T+ | (),

where l ∈ �. From the W3C specification, we see a DTD as a function that
associates a content model to each label taken from a subset �′ of � such that
�′ gathers all labels used in content models. We thus represent the set LDT D

of tree types described by DTDs as follows:

LDT D � T ::= l | T1 � T2 | T1, T2 | T? | T ∗ | T+ | () |
let (li → Ti)1≤i≤m in T

Note that LDT D ⊆ LRT is obvious, by associating a unique type variable to each
label. In the following, we therefore no longer distinguish DTDs from general
regular tree types.

4.2 Binarization of Types

In Section 2.1, we used a straightforward isomorphism between binary trees
and sequences of unranked trees. There is also an isomorphism between un-
ranked and binary tree types, which follows exactly the same intuition as for
trees.

Binary tree types are described by the following syntax:

LBT � T ::= ∅ | ε | T1 � T2 | l (X 1, X 2) |
let (X i → Ti)1≤i≤m in T

For any type, there is an equivalent binary type, and vice versa. We use the
translation function shown in Figure 12 (adapted from that found in Hosoya
et al. [2005]) to convert a type into its corresponding binary representation.
The function considers the environment θ : TVar → LRT for accessing the type
bound to a variable X i by constructs of the form “let (X i → Ti)1≤i≤m in T .”

6For instance, the type “let(X → a[], Y)(Y → b[], X � ()) in X ” is allowed.
7A local tree grammar is a regular tree grammar without competing nonterminals. Two nontermi-

nals A and B of a tree grammar are said to compete with each other if one production rule has A
in its lefthand-side, one production rule has B in its lefthand-side, and these two rules share the

same terminal symbol in the righthand-side.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

490 • P. Genevès and N. Layaı̈da

Fig. 12. Binarization of tree types.

4.3 Translation into μ-Calculus

We now introduce the translation of regular tree types into μ-calculus, which
is based on the binary representation of types. In order to simplify translation,
we introduce a notation for a n-ary least fixpoint binder:

letμ (X i.ϕi)1≤i≤m in ψ

This notation is actually a syntactic sugar for ψ , where all free occurrences of X i

have been replaced by μX i.ϕi until ψ becomes closed (i.e., all X i in ψ are in scope
of their corresponding unary μ-binder). This provides a shorthand for denoting a
Lμ formule which would be of exponential size if expressed using only the unary
least fixpoint construct. Such a naive expansion contains unnecessary duplicate
formulae, whereas the satisfiability solver operates only on a single copy of them
(see Section 6.1). Therefore, the n-ary binder is a useful compact notation for
representing Lμ translations of recursive types, without introducing useless
blow-ups between representation of formulae and their satisfiability test.

The translation from binary regular tree types into Lμ formulae is given by
the following rules:

[[·]] : LBT → Lμ

[[∅]] = ⊥
[[ε]] = ⊥
[[T1 � T2]] = [[T1]] ∨ [[T2]]
[[l (X 1, X 2)]] = l ∧ succ1(X 1) ∧ succ2(X 2)
[[let(X i → Ti)1≤i≤m in T]] = letμ (X i.[[Ti]])1≤i≤m in [[T]]

,

where there is an implicit bijective correspondence between LBT variables from
TVar and Lμ variables from Var. Note that the translations of the empty tree
type and the empty tree are the same, since we choose not to explicitly mention
empty trees in satisfiability results. The function succ·(·) sets the tree frontier
accordingly:

succ·(·) : Prog × TVar → Lμ

succα(X) =
{

[α] X if nullable(X)

〈α〉 X if not nullable(X)

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

A System for the Static Analysis of XPath • 491

The predicate nullable(·) indicates whether a type contains the empty tree:

nullable(·) : TVar ∪ LBT → {true, false}
nullable(X) = nullable(θ (X))
nullable(∅) = false
nullable(ε) = true
nullable(l) = false
nullable(T1 � T2) = nullable(T1) ∨ nullable(T2)
nullable(l (X 1, X 2)) = false
nullable(let(X i → Ti)1≤i≤m in T) = nullable(T)

5. XML DECISION PROBLEMS

We have translated both XPath over unranked trees, and regular unranked tree
types in the unifying Lμ logic over binary trees. Owing to these embeddings, we
now reduce XML decision problems (such as XPath containment, equivalence,
satisfiability, overlap, and coverage) to satisfiability in Lμ.

We first introduce some simplified notations. For an XPath expression e ∈
LXPath, we note ϕe the translated formula E→[[e]](ϕcontext) ∈ Lμ. Furthermore,
we note T the set of trees: By default, T = T n

� , and whenever an optional DTD
d ∈ LDT D is specified, T = [[d]]∅. Finally, we note ϕT the Lμ embedding of the
tree language T . In the absence of DTDs ϕT = 	, and ϕT = [[B(d)]] in the
presence of d ∈ LDT D.

Several decision problems needed in applications can be expressed in terms
of Lμ formulae:

� XPath Containment
—Input: e1, e2 ∈ LXPath, and optional d ∈ LDT D

—Problem: Does e2 always select all nodes selected by e1?
—Definition: ∀t ∈ T , ∀x ∈ t, Se[[e1]]t

x ⊆ Se[[e2]]t
x

—Tested Lμ formula: ϕe1
∧ ¬ϕe2

� XPath Equivalence
—Input: e1, e2 ∈ LXPath, and optional d ∈ LDT D

—Problem: Does e2 always select exactly the same nodes as e1?
—Definition: ∀t ∈ T , ∀x ∈ t, Se[[e1]]t

x = Se[[e2]]t
x

—Equivalence can be tested by two successive and separate containment
checks

� XPath Satisfiability
—Input: e ∈ LXPath and optional d ∈ LDT D

—Problem: Will e ever return a nonempty set of nodes?
—Definition: ∀t ∈ T , ∀x ∈ t, Se[[e]]t

x = ∅
—Tested Lμ formula: ϕe

� XPath Overlap
—Input: e1, e2 ∈ LXPath, and optional d ∈ LDT D

—Problem: May e1 and e2 select common nodes?
—Definition: ∀t ∈ T , ∀x ∈ t, Se[[e1]]t

x ∩ Se[[e2]]t
x = ∅

—Tested Lμ formula: ϕe1
∧ ϕe2

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

492 • P. Genevès and N. Layaı̈da

� XPath Coverage
—Input: e1, e2, ..., en ∈ LXPath, and optional d ∈ LDT D

—Problem: Are nodes selected by e1 always selected by one of the e2, ..., en?
—Definition: ∀t ∈ T , ∀x ∈ t, Se[[e1]]t

x ⊆ ⋃
2≤i≤n Se[[ei]]

t
x

—Tested Lμ formula: ϕe1
∧ ∧

2≤i≤n ¬ϕei

Note that for the containment problem, we actually test the unsatisfiability
of ϕe1

∧ ¬ϕe2
. Indeed, checking that an XPath expression e1 is contained into

another expression e2 consists of checking that the implication ϕe1
⇒ ϕe2

holds
for all trees. In other words, there exists no tree for which the results of e1

are not included in those of e2, that is, the negated implication ϕe1
∧ ¬ϕe2

is
unsatisfiable.

Since we need to enforce the finite binary tree model property (as seen in
Section 2.1), we formulate decision problems from the root, and the actually
checked formula becomes:

ϕroot ∧ ϕft ∧ (ϕT ∧ μX .ϕtested ∨ 〈
1
〉
X ∨ 〈

2
〉
X)FBT, (1)

where ϕtested corresponds to a particular XPath decision problem from those
given previously. Intuitively, the fixpoint is introduced for “plunging” XPath
navigation performed by ϕtested at any location in the tree. It is, for example,
necessary for relative XPath expressions that involve upward navigation in the
tree.

It is important to note that formula (1) is always alternation-free, since em-
beddings of both XPath and tree types produce alternation-free formulae, and
the negation of an alternation-free sentence remains alternation-free. In prac-
tice, the negated sentences introduced by XPath embeddings are turned into
negation normal form by applying the rules given in Figure 4.

6. SYSTEM EVALUATION

The proposed approach has been fully implemented and the working system is
available [Genevès and Layaı̈da 2006]. A compiler takes XPath expressions as
input, and translates them into Lμ formulae. Another compiler takes regular
tree types as input (DTDs) and outputs their Lμ translation. The formula of a
particular decision problem is then composed, normalized, and solved.

6.1 Complexity Analysis and Implementation Principles

Our μ-calculus satisfiability solver is specialized for alternation-free μ-calculus
with converse. A detailed description of the solver is beyond the scope of the
article. We rather focus on its aspects which allow us to establish precise com-
plexity results for the XML decision problems considered in this article. The
Lμ satisfiability solver is inspired by the tableau methods described in Tanabe
et al. [2005] and Pan et al. [2002]. The algorithm relies on a top-down tableau
method which attempts to construct satisfying Kripke structures by a fixpoint
computation. Nodes of the tableau are specific subsets of a set called the Lean
[Pan et al. 2002]. Given a formula ψ ∈ Lμ, the Lean is the subset of the Fischer-
Ladner closure [Fischer and Ladner 1979] of ψ composed of atomic and modal
subformulae of ψ [Pan et al. 2002]. The algorithm starts from the set of all

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

A System for the Static Analysis of XPath • 493

possible nodes, and repeatedly removes inconsistent nodes until a fixpoint is
reached. At the end of the computation, if ψ is present in a node of the fixpoint,
then ψ is satisfiable. In this case, the fixpoint contains a satisfying model that
can be easily extracted and used as a satisfying example XML tree.

We can now state the complexity of XML decision problems addressed in this
article:

PROPOSITION 6.1. XPath containment, equivalence, satisfiability, overlap,
and coverage decision problems, in the presence or absence of regular tree con-
straints, can be solved in time complexity 2O(n·log n), where n is the Lean size of
the corresponding Lμ formula.

This upper bound is derived from:

(1) the linear translations of XPath and regular tree types into the μ-calculus;
and

(2) the 2O(n·log n) time complexity of our solver, which corresponds to the best
known complexity for deciding alternation-free μ-calculus with converse
over Kripke structures [Tanabe et al. 2005]. Note that this is more efficient
than the complexity for the whole μ-calculus with converse [Vardi 1998],
which is known to be 2O(n4·log n) [Grädel et al. 2002].

The key observation for the linear translation of regular tree types is that only
distinct atomic and modal subformulae of the translated formula are present in
the Lean, even for an n-ary binder ϕ = letμ (X i.ϕi)1≤i≤m in X k . More precisely,
the Lean corresponding to the translation of ϕ contains at most:

—the two eventualities 〈a〉 	 for a = 1, 2;

—2·m universalities [a] ϕ, where m is the number of binary tree type variables
in the binder and the constant factor corresponds to the downward programs
a = 1, 2; and

—the atomic propositions representing the alphabet symbols used in ϕ.

Deriving complexity from properties of the closure of a formula was first used
by Fischer and Ladner [1979] for establishing the decidability of PDL in single
exponential time. Analog observations have also been made for the modal logic
K [Pan et al. 2002], and the μ-calculus over general Kripke structures [Tanabe
et al. 2005]. Our results can be seen as an application of this technique to the
case where regular tree types are combined with XPath bidirectional queries
over finite trees.

Keys of the efficiency of the method for large practical instances are as
follows:

(1) Nodes of the tableau contain only modal formulae and exactly one atomic
proposition (for XML), which greatly reduces the number of enumerated
nodes for large alphabets.

(2) Negation in the μ-calculus is rather straightforward compared to automata
techniques. Indeed, handling Lμ formulae in negation normal form simply
reduces to checking membership of atomic propositions in tableau nodes.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

494 • P. Genevès and N. Layaı̈da

This contrasts with tree automata techniques, which require for every nega-
tion the full construction and complementation of automata with an ex-
ponential blow-up. As pointed out in Baader and Tobies [2001] and Pan
et al. [2002], tableau methods for logics with the tree model property can
be viewed as implementations of the automata-theoretic approach, which
avoids an explicit automata construction.

(3) Our implementation relies on representing sets of nodes and operating
on them symbolically using Binary Decision Diagrams (BDDs) [Bryant
1986]. BDDs provide a canonical representation of boolean functions and
their effectiveness is well known in formal verification of systems [Edmund
et al. 1999]. In our approach, BDD variables encode truth status of Lean
formulae. The cost of BDD operations is very sensitive to variable order-
ing. Finding the optimal variable ordering is known to be NP-complete
[Hojati et al. 1996], however several heuristics are known to perform well
in practice [Edmund et al. 1999]. Choosing a good initial variable order does
significantly improve performance. We found out that preserving locality of
the initial problem is essential. We observed that the variable order deter-
mined by the breadth-first traversal of the initial formula (thus keeping
sister subformulae in close proximity while ordering Lean formulae) yields
better results in practice.

6.2 Experimental Results

The objective of the section aims at testing the practical performance of our
method. We carried out several testing scenarios.8 First, we used an XPath
benchmark [Franceschet 2005] whose goal is to cover XPath features by gath-
ering a significant variety of XPath expressions met in real-world applications.
In this first test series, we do not yet consider types and only focus on the XPath
containment problem, since its logical formulation (presented in Section 5) is
the most complex because it requires the logic to be closed under negation. The
first test series consists of finding the relation holding for each pair of queries
from the benchmark. This means checking the containment of each query of the
benchmark against all others. We note qi ⊆ qj whenever the query qi is con-
tained in the query qj . Comparisons of two queries qi and qj may yield three
different results:

(1) qi ⊆ qj and qj ⊆ qi, the queries are semantically equivalent, we note
qi ≡ qj ;

(2) qi ⊆ qj but qj �⊆ qi, we denote, by qi ⊂ qj or alternatively, by qj ⊃ qi; or

(3) qi �⊆ qj and qj �⊆ qi, queries are not related, we note qi �∼ qj .

Queries are presented in Figure 13. Corresponding results, together with the
running times of the decision procedure, are summarized in Table I. Times
reported in milliseconds correspond to the actual running time of the μ-calculus
satisfiability solver, without the extra time spent for parsing XPath nor the

8Experiments have been conducted on a Pentium 4, 3 Ghz, with 512Mb of RAM, running Eclipse

on Windows XP.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

A System for the Static Analysis of XPath • 495

Fig. 13. XPath queries taken from the XPathmark benchmark.

Table I. Results and Total Computation Times

Time (ms) Time (ms)

Relation ⊆ ⊇ Relation ⊆ ⊇
q1 �∼ q2 18 23 q3 �∼ q7 12 12

q1 �∼ q3 14 22 q3 �∼ q8 14 8

q1 �∼ q4 9 12 q3 �∼ q9 13 15

q1 ⊃ q5 16 7 q4 �∼ q5 24 15

q1 �∼ q6 22 13 q4 �∼ q6 9 12

q1 �∼ q7 15 12 q4 �∼ q7 22 12

q1 ⊃ q8 9 11 q4 �∼ q8 14 21

q1 �∼ q9 16 16 q4 �∼ q9 13 14

q2 ⊂ q3 32 33 q5 �∼ q6 14 11

q2 ⊂ q4 38 36 q5 �∼ q7 11 9

q2 �∼ q5 24 23 q5 ≡ q8 8 12

q2 �∼ q6 22 35 q5 �∼ q9 18 21

q2 �∼ q7 31 36 q6 �∼ q7 21 21

q2 �∼ q8 26 24 q6 �∼ q8 15 17

q2 �∼ q9 34 31 q6 �∼ q9 14 15

q3 ⊃ q4 17 21 q7 �∼ q8 26 18

q3 �∼ q5 5 7 q7 �∼ q9 14 16

q3 �∼ q6 4 9 q8 �∼ q9 11 10

(linear) cost of the translation into μ-calculus. Obtained results show that all
tests are solved in several milliseconds. This suggests that XPath expressions
used in real-world scenarios can be efficiently handled in practice.

As a second test series, we compare expressions found in research papers
on the containment of XPath expressions. Figure 14 presents the expressions
we collected. For this set of expressions, the tree pattern homomorphism tech-
nique [Miklau and Suciu 2004] returns false negatives, whereas our approach
is complete. Figure 14 also shows the results obtained with our system. These
suggest that our system is able to reasonably handle containment instances
which are difficult to solve using other techniques.

Figure 15 presents the results of a third test series, including examples with
intersection, and axes such as “following” and “preceding,” which are not illus-
trated in the previous series.

The fourth test series aims at evaluating the effectiveness of the system for
XPath decision problems in the presence of DTDs. We used a small recursive
DTD (given in Figure 16), and real-world DTDs of the SMIL [Hoschka 1998] and
XHTML [Pemberton 2000] standards. Table II gives the size of each DTD by

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

496 • P. Genevès and N. Layaı̈da

Fig. 14. Results on XPath containment instances found in research papers.

Fig. 15. Results on examples including “following” and “preceding” axes.

Fig. 16. (People.dtd): a simple recursive DTD.

Table II. DTDs Used in Practical Experiments

DTD Examples Symbols Type Variables Binary Type Variables

People.dtd (Figure 16) 8 15 11

SMIL 1.0 [Hoschka 1998] 19 29 11

XHTML 1.0 Strict [Pemberton 2000] 77 104 325

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

A System for the Static Analysis of XPath • 497

Fig. 17. XPath expressions used in the presence of DTDs.

Table III. Some Decision Problems in the Presence of DTDs and Results

XPath Decision Problem Instance DTD Answer Time (ms)

Containment p1 ⊆ p2 People.dtd true 32

Coverage p2 ⊆ p3 ∪ p4 People.dtd true 41

Satisfiability p5 SMIL 1.0 true 110

Overlap p5 ∩ p6 �= ∅ SMIL 1.0 false 174

Containment p6 ⊆ p7 SMIL 1.0 false 120

Satisfiability p8 SMIL 1.0 true 157

Satisfiability p9 XHTML 1.0 true 2630

Coverage p10 ⊆ p11 ∪ p12 ∪ p13 XHTML 1.0 true 2872

Containment p14 ⊆ p15 XHTML 1.0 true 2931

presenting the number of symbols used (alphabet size) and number of grammar
production rules (type variables) in the unranked and binary representations.

For each DTD, we built several XPath decision problems using the ex-
pressions shown in Figure 17. Some decision problems and their results are
presented in Table III. The system performs well for the respectively small,
medium, and large recursive DTDs.

The satisfiability test for p9 illustrates an additional benefit of our technique
that automatically outputs a satisfying XML document (shown in Figure 18),
enriched with XPath context and target information. Interestingly, this example
also shows that the official XHTML DTD does not syntactically prohibit the
nesting of anchors.

For the large XHTML case, we observe that the time needed is significantly
more important, but deciding XPath problems remains practically feasible, es-
pecially for static analysis purposes wherein such operations are performed at
compile-time.

These preliminary measurements shed light, for the first time, on the cost of
solving XPath decision problems in practice.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

498 • P. Genevès and N. Layaı̈da

Fig. 18. Generated XML tree for satisfiability of p9 in the presence of the XHTML DTD.

7. RELATED WORK

Relatively close in spirit to our work is the constructive connection between
XPath and formal logics, which is actively studied [Marx 2004b; Benedikt
et al. 2005; Barceló and Libkin 2005]. From Marx [2004a] and Genevès and
Vion-Dury [2004b], we know that XPath expressive power is close to first-order
logic (FO). However, FO does not fully capture regular tree types [Benedikt and
Segoufin 2005]. Thus, attempts to characterize XPath subfragments in terms
of FO variants such as computational tree logic (CTL) [Marx 2004b; Miklau
and Suciu 2004], which is equivalent to FO over tree structures [Marx 2004a;
Barceló and Libkin 2005], are not intended to support regular XML types.
The work found in Afanasiev et al. [2005] proposes a variant of propositional
dynamic logic (PDL) [Fischer and Ladner 1979] with a similar EXPTIME
complexity for reasoning about ordered trees, but its exact expressive power is
still under study.

One of the most expressive (yet decidable) known logics is monadic second-
order logic (MSO) over tree structures, which extends FO by quantification
over sets of nodes. Specifically, the appropriate MSO variant which exactly
captures regular tree types is the weak monadic second-order logic of two
successors (WS2S) [Thatcher and Wright 1968; Doner 1970]. From Arnold
and Niwinski [1992] and Kupferman and Vardi [1999], we know that WS2S is
exactly as expressive as the alternation-free fragment (AFMC) of the proposi-
tional modal μ-calculus introduced in Kozen [1983]. However, the satisfiability
problem for WS2S is nonelementary9 while in EXPTIME10 AFMC. Moreover,

9We recall that the term elementary introduced by Grzegorczyk [1953] refers to functions obtained

from some basic functions by operations of limited summation and limited multiplication. Consider

the function tower() defined by: {
tower(n, 0) = n
tower(n, k + 1) = 2tower(n,k)

Grzegorczyk [1953] has shown that every elementary function in one argument is bounded by

λn.tower(n, c) for some constant c. Hence, the term nonelementary refers to a function that grows

faster than any such function.
10The complexity class EXPTIME is the set of all decision problems solvable by a deterministic

Turing machine in O(2p(n)) time, where p(n) is a polynomial function of the input size n.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

A System for the Static Analysis of XPath • 499

AFMC subsumes all early logics, such as CTL [Clarke and Emerson 1981]
and PDL [Fischer and Ladner 1979]. Furthermore, the work in Vardi [1998]
adds converse programs to propositional modal μ-calculus and shows that the
resulting logic still admits an EXPTIME decision procedure for satisfiability.
It follows that alternation-free modal μ-calculus with converse sounds like
an appropriate logic for XML: It is expressive enough to capture a significant
class of XPath decision problems, while potentially providing efficient and
practically effective decision procedures.

From the point of view of computational complexity, some EXPTIME upper
bounds are already known for the satisfiability and containment of specific sub-
sets of our XPath fragment. The complexity of XPath satisfiability in the pres-
ence of DTDs is studied in Benedikt et al. [2005]. XPath containment has specif-
ically attracted a lot of research attention [Amer-Yahia et al. 2001, Deutsch and
Tannen 2001, Miklau and Suciu 2004, Neven and Schwentick 2003, Schwentick
2004, Wood 2000; 2003]. Prior work concentrated on various combinations of
the previous factors for obtaining complexity results (see Schwentick [2004] for
an overview). Specifically, the focus was given to restricted positive XPath sub-
fragments without upward axes. In particular, Neven and Schwentick [2003]
proves an EXPTIME upper bound for containment (in the presence of DTDs)
of queries containing the “child” and “descendant” axes, and union of paths.
Deutsch and Tannen [2001] consider XPath containment in the presence of
DTDs and simple XPath integrity constraints (SXICS). They maintain that this
problem is undecidable in general and in the presence of bounded SXICs and
DTDs. Containment for the fragment XP{∗,//,[]} is shown to be coNP-complete in
Miklau and Suciu [2004], where the containment mapping technique relies on a
polynomial-time tree homomorphism algorithm that gives a sufficient, but not
necessary, condition for containment of XP{∗,//,[]} in general. Additionally, the
containment problem is shown to be in EXPTIME for the fragments XP{//,[]},
XP{//,[],|}, XP{//,|} in the presence of DTDs in Wood [2003].

Compared to all these previous works, the XPath fragment we consider is far
more complete and much more realistic. We also present a single unifying logical
framework in which all major XPath features, but also regular tree types, fit
together. Moreover, our framework yields effective decision procedures that are
usable in practice for real-world scenarios (whereas no usable working system
has been reported in prior work).

Finally, from a theoretical perspective, we see the connection between XML
and μ-calculus as a simple way of deriving the precise upper bound time com-
plexity 2O(n·log n) of XML decision problems, where n is the combined size of
considered XPath queries and tree types.

8. CONCLUSION

We propose a new logical approach for XPath decision problems. XPath queries
and regular tree types are translated into the μ-calculus. XML decision prob-
lems are expressed as formulae in this logic, then decided using an effi-
cient decision procedure for μ-calculus satisfiability. This article makes several
contributions.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

500 • P. Genevès and N. Layaı̈da

First, we propose a specific variant of the μ-calculus, namely, alternation-free
modal μ-calculus with converse, as the appropriate logic for reasoning on XML
trees, XPath queries, and XML types. As a valuable outcome, we show how both
XPath and regular tree types can be linearly translated in the μ-calculus.

Second, we take advantage of these translations to reduce several XML de-
cision problems to satisfiability in Lμ. We obtain effective EXPTIME decision
procedures that are usable in practice. The considered XPath fragment includes
union, intersection, path composition (together with all downward and upward
axes), branching, Boolean connectives, wildcards, and negation, in the presence
or absence of DTDs. This fragment is far more complete than other fragments
addressed in previous studies. We provide practical experiments and detailed
results that corroborate our claim that this approach is efficient in practice
for real-world XPath expressions and DTDs. Our system has been fully imple-
mented [Genevès and Layaı̈da 2006] and can be used for the static analysis
of XML specifications. This strengthens the hope for an effective analysis of
standard XML transformations in the near future.

Eventually, an additional advantage of the technique is to allow generation of
XML tree examples when the containment does not hold. We believe this makes
our method of special interest for many applications, including debuggers or ap-
plications that can benefit from a precise reporting during static analysis stages.

One direction of future work consists in specifically tuning the μ-calculus
satisfiability solver for XML. Incorporating XML peculiarities directly into the
core of the μ-calculus solver (instead of general Kripke structures) may yield
even more efficient decision procedures.

REFERENCES

ABITEBOUL, S. AND VIANU, V. 1999. Regular path queries with constraints. J. Compute. Syst.
Sci. 58, 3, 428–452.

AFANASIEV, L., BLACKBURN, P., DIMITRIOU, I., GAIFFE, B., GORIS, E., MARX, M., AND DE RIJKE, M. 2005.

PDL for ordered trees. J. Appl. Non-Classical Logics 15, 2, 115–135.

AMER-YAHIA, S., CHO, S., LAKSHMANAN, L. V. S., AND SRIVASTAVA, D. 2001. Minimization of tree pattern

queries. SIGMOD Record 30, 2, 497–508.

ARNOLD, A. AND NIWINSKI, D. 1992. Fixed point characterization of weak monadic logic definable

sets of trees. In Tree Automata and Languages. North-Holland, Amsterdam, Netherlands. 159–

188.

BAADER, F. AND TOBIES, S. 2001. The inverse method implements the automata approach for modal

satisfiability. In IJCAR ’01: Proceedings of the 1st International Joint Conference on Automated
Reasoning. Springer-Verlag, London. 92–106.

BARCELÓ, P. AND LIBKIN, L. 2005. Temporal logics over unranked trees. In LICS: Proceedings of
the 20th Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society, New

York. 31–40.

BENEDIKT, M., FAN, W., AND GEERTS, F. 2005. XPath satisfiability in the presence of DTDs. In PODS:
Proceedings of the 24th ACM Symposium on Principles of Database Systems. ACM, New York.

25–36.

BENEDIKT, M. AND SEGOUFIN, L. 2005. Regular tree languages definable in FO. In STACS: Proceed-
ings of the 22nd Annual Symposium on Theoretical Aspects of Computer Science. Lcture Notes

in Computer Science vol. 3404. Springer-Verlag. 327–339.

BERGLUND, A., BOAG, S., CHAMBERLIN, D., FERNÁNDEZ, M. F., KAY, M., ROBIE, J., AND SIMÉON,

J. 2006. XML path language (XPath) 2.0, W3C candidate recommendation. http://www.w3.

org/TR/xpath20/.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

A System for the Static Analysis of XPath • 501

BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M., MALER, E., AND YERGEAU, F. 2004. Extensible markup

language (XML) 1.0 (3rd ed.), W3C recommendation. http://www.w3.org/TR/2004/REC-xml-

20040204/.

BRYANT, R. E. 1986. Graph-Based algorithms for Boolean function manipulation. IEEE Trans.
Comput. 35, 8, 677–691.

CLARK, J. AND DEROSE, S. 1999. XML path language (XPath) version 1.0, W3C recommendation.

http://www.w3.org/TR/1999/REC-xpath-19991116.

CLARKE, E. M. AND EMERSON, E. A. 1981. Design and synthesis of synchronization skeletons using

branching-time temporal logic. In Proceedings of the Logic of Programs Workshop. Lecture Notes

in Computer Science vol. 131. Springer-Verlag. 52–71.

DEUTSCH, A. AND TANNEN, V. 2001. Containment of regular path expressions under integrity con-

straints. In KRDB: Proceedings of the 8th International Workshop on Knowledge Representation
Meets Databases. CEUR Workshop Proceedings vol. 45, 1–11.

DONER, J. 1970. Tree acceptors and some of their applications. J. Comput. Syst. Sci. 4, 406–

451.

EDMUND, M., CLARKE, J., GRUMBERG, O., AND PELED, D. A. 1999. Model Checking. MIT Press,

Cambridge, MA.

FALLSIDE, D. C. AND WALMSLEY, P. 2004. XML Schema part 0: Primer 2nd ed., W3C recommenda-

tion. http://www.w3.org/TR/xmlschema-0/.

FAN, W., CHAN, C.-Y., AND GAROFALAKIS, M. 2004. Secure XML querying with security views. In

SIGMOD: Proceedings of the ACM SIGMOD International Conference on Management of Data.

ACM Press, New York. 587–598.

FISCHER, M. J. AND LADNER, R. E. 1979. Propositional dynamic logic of regular programs. J. Com-
put. Syst. Sci. 18, 2, 194–211.

FRANCESCHET, M. 2005. XPathMark—An XPath benchmark for XMark generated data. In XSYM:
Proceedings of the 3rd International Symposium on Database and XML Technologies. Lecture

Notes in Computer Science vol. 3671. Springer-Verlag. 129–143.

GENEVÈS, P. AND LAYAı̈DA, N. 2006. A μ-calculus satisfiability solver for XML.

http://wam.inrialpes.fr/xml.

GENEVÈS, P. AND VION-DURY, J.-Y. 2004a. Logic-Based XPath optimization. In DocEng: Pro-
ceedings of the ACM Symposium on Document Engineering. ACM Press, New York. 211–

219.

GENEVÈS, P. AND VION-DURY, J.-Y. 2004b. XPath formal semantics and beyond: A Coq-Based ap-

proach. In TPHOLs: Emerging Trends Proceedings of the 17th International Conference on The-
orem Proving in Higher Order Logics. Salt Lake City, UT. 181–198.

GOTTLOB, G., KOCH, C., AND PICHLER, R. 2005. Efficient algorithms for processing XPath queries.

ACM Trans. Database Syst. 30, 2, 444–491.

GRÄDEL, E., THOMAS, W., AND WILKE, T., Eds. 2002. Automata Logics, and Infinite Games: A Guide
to Current Research. Springer-Verlag, New York.

GRZEGORCZYK, A. 1953. Some classes of recursive functions. Rozprawy Matematyczne 4, 1–45.

HOJATI, R., KRISHNAN, S. C., AND BRAYTON, R. K. 1996. Early quantification and partitioned transi-

tion relations. In ICCD: Proceedings of the International Conference on Computer Design, VLSI
in Computers and Processors. IEEE Computer Society. 12–19.

HOPCROFT, J. E., MOTWANI, R., ROTWANI, AND ULLMAN, J. D. 2000. Introduction to Automata Theory,
Languages and Computability. Addison-Wesley Longman, Boston.

HOSCHKA, P. 1998. Synchronized multimedia integration language (SMIL) 1.0 specification, W3C

recommendation. http://www.w3.org/TR/REC-smil/.

HOSOYA, H., VOUILLON, J., AND PIERCE, B. C. 2005. Regular expression types for XML. ACM Trans.
Program. Lang. Syst. 27, 1, 46–90.

KOZEN, D. 1983. Results on the propositional μ-calculus. Theoret. Comput. Sci. 27, 333–

354.

KOZEN, D. 1988. A finite model theorem for the propositional μ-calculus. Studia Logica 47, 3,

233–241.

KUPFERMAN, O. AND VARDI, M. 1999. The weakness of self-complementation. In Proceedings of the
16th Symposium on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science

vol. 1563. Springer-Verlag. 455–466.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

502 • P. Genevès and N. Layaı̈da

LEVIN, M. Y. AND PIERCE, B. C. 2005. Type-Based optimization for regular patterns. In DBPL:
Proceedings of the 10th International Symposium on Database Programming Languages. Lecture

Notes in Computer Science vol. 3774. Springer-Verlag.

MARTENS, W. AND NEVEN, F. 2004. Frontiers of tractability for typechecking simple XML transfor-

mations. In PODS: Proceedings of the 23rd ACM Symposium on Principles of Database Systems.

ACM, New York. 23–34.

MARX, M. 2004a. Conditional XPath, the 1st order complete XPath dialect. In PODS: Proceedings
of the 23rd ACM Symposium on Principles of Database Systems. ACM, New York. 13–22.

MARX, M. 2004b. XPath with conditional axis relations. In Proceedings of the 9th International
Conference on Extending Database Technology. Lecture Notes in Computer Science vol. 2992.

Springer-Verlag. 477–494.

MIKLAU, G. AND SUCIU, D. 2004. Containment and equivalence for a fragment of XPath. J.
ACM 51, 1, 2–45.

MURATA, M., LEE, D., MANI, M., AND KAWAGUCHI, K. 2005. Taxonomy of XML schema languages

using formal language theory. ACM Trans. Internet Technol. 5, 4, 660–704.

NEVEN, F. 2002a. Automata, logic, and XML. In CSL: Proceedings of the 16th International Work-
shop and 11th Annual Conference of the EACSL on Computer Science Logic. Springer-Verlag.

2–26.

NEVEN, F. 2002b. Automata theory for XML researchers. SIGMOD Record 31, 3, 39–46.

NEVEN, F. AND SCHWENTICK, T. 2003. XPath containment in the presence of disjunction, DTDs, and

variables. In ICDT: Proceedings of the 9th International Conference on Database Theory. Lecture

Notes in Computer Science vol. 2572. Springer-Verlag. 315–329.

PAN, G., SATTLER, U., AND VARDI, M. Y. 2002. BDD-Based decision procedures for K. In CADE:
Proceedings of the 18th International Conference on Automated Deduction. Springer-Verlag. 16–

30.

PEMBERTON, S. 2000. XHTML 1.0 the extensible hypertext markup language (2nd ed.), W3C rec-

ommendation. http://www.w3.org/TR/xhtml1/.

SCHWENTICK, T. 2004. XPath query containment. SIGMOD Record 33, 1, 101–109.

SUR, G., HAMMER, J., AND SIMÉON, J. 2004. Updatex—An XQuery-Based language for processing

updates in XML. In PLAN-X: Proceedings of the International Workshop on Programming Lan-
guage Technologies for XML. Venice, Italy. BRICS Notes Series vol. NS-03-4. BRICS, Aarhus,

Denmark. 40–53.

TANABE, Y., TAKAHASHI, K., YAMAMOTO, M., TOZAWA, A., AND HAGIYA, M. 2005. A decision procedure

for the alternation-free two-way modal μ-calculus. In TABLEAUX: Proceedings of the 14th In-
ternational Conference on Automated Reasoning with Analytic Tableaux and Related Methods.

Lecture Notes in Computer Science vol. 3702. Springer-Verlag. 277–291.

THATCHER, J. W. AND WRIGHT, J. B. 1968. Generalized finite automata theory with an application

to a decision problem of second-order logic. Math. Syst. Theory 2, 1, 57–81.

TOZAWA, A. 2001. Towards static type checking for XSLT. In DocEng: Proceedings of the ACM
Symposium on Document Engineering. ACM, New York. 18–27.

VARDI, M. Y. 1998. Reasoning about the past with two-way automata. In ICALP: Proceedings of
the 25th International Colloquium on Automata, Languages and Programming. Springer-Verlag.

628–641.

WADLER, P. 2000. Two semantics for XPath. Internal Tech. Note of the W3C XSL Working Group.

http://homepages.inf.ed.ac.uk/wadler/papers/xpath-semantics/xpath-semantics.pdf.

WOOD, P. T. 2000. On the equivalence of XML patterns. In CL: Proceedings of the 1st International
Conference on Computational Logic. Lecture Notes in Computer Science vol. 1861. Springer-

Verlag. 1152–1166.

WOOD, P. T. 2003. Containment for XPath fragments under DTD constraints. In ICDT: Proceed-
ings of the 9th International Conference on Database Theory. Lecture Notes in Computer Science

vol. 2572. Springer-Verlag. 300–314.

Received September 2005; revised June 2006; accepted August 2006

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

