
Automating XML documents Transformations: A conceptual 
modelling based approach 

A.Boukottaya1, C.Vanoirbeek1, F.Paganelli2, O.Abou Khaled3 
1Media Research Group 

EPFL (Swiss Federal Institute of Technology) 
 1015 Lausanne, Switzerland 

{aida.boukottaya, christine.vanoirbeek}@epfl.ch 
 

2Electronics and Telecommunications Departement,  
University of Florence, Italy 

paganelli@achille.det.unifi.it 

 
3 Department of Computer Science, Engineering School of Fribourg, Switzerland 

Omar.Aboukhaled@eif.ch 

 

Abstract 
The growing use of XML mark-up language has made a 
large amount of heterogeneous XML documents widely 
available. As the number of applications that utilize 
heterogeneous XML documents grows, the importance of 
XML documents transformations increases greatly. A 
serious obstacle for translating directly between two XML 
documents, using languages like XSLT, is that a mapping 
between the two XML representations needs to be 
carefully specified by a human expert. Current research 
attempts to address this problem by proposing algorithms 
to automate aspects of XML schemas matching task. In 
this paper, we identify two major problems encountered 
when current matching algorithms are used in the context 
of XML documents transformations. The first problem 
concerns possible scalability problem due to the diversity 
of schema constructs. The second problem deals with the 
need to perform semantic matching. We argue in favour of 
conceptual modelling as solution to avoid such problems. 
We introduce a new layered model for XML schemas, 
called Layered Interoperability Model for XML Schemas 
(LIMXS). LIMXS offers a semantic view for XML 
schemas through the specification of concepts and 
semantic relationships among them.  We will show how 
our model transforms the matching algorithm into a 
dynamic and incremental algorithm that provide semantic 
mappings and helps to automate the transformation 
process. 

Keywords:  Automating XML documents transformations, 
Conceptual modelling, Layered Interoperability Model for 
XML Schemas, Semantic matching. 

1 Introduction 

1.1 Motivation 
The growing use of XML mark-up language (XML 1.0 
1998) has made a large amount of heterogeneous XML 
documents widely available. Heterogeneity arises in 
general from the fact that each organization or application 
creates its own documents structure according to specific 

requirements. These requirements are specified within a 
data model called schema (DTD or recently W3C XML 
schema standard (XML Schema 2001)) that describes 
XML document’s valid content, and allowed structure. As 
the number of applications that utilize heterogeneous 
XML documents grows, the importance of XML 
documents transformations increases greatly. Currently, 
such transformations are manually encoded on a 
case-by-case basis using specific languages such as XSLT 
(XSLT 1.0 1999). XSLT, a recommendation of the World 
Wide Web Consortium, is a language, itself written in 
XML, with powerful computing capability encoding 
transformation of XML documents. An XSLT program 
(called stylesheet) is a set of template rules, each of which 
has two parts: a pattern that is matched against nodes in the 
source document and a template that can be instantiated to 
form the result document.  The usual procedure to write 
such stylesheet requires an analysis of both the semantics 
and the structures of the source and target XML files to 
discover similarities between them. Manual coding then 
follows this analysis. However XSLT is a powerful 
transformation language, it has several drawbacks. It 
appears to be a complex language and simple 
transformations require the user to write a program, which 
needs complete mastery of XSLT language, and thus 
programming skills. Moreover, each time an XML 
document should be transformed to another XML 
document, a new XSLT program must be written.  Several 
attempts at simpler and more formal transformation 
languages are underway but the issue of XML documents 
transformations remains complex.   

1.2 Related Work 
Currently, to perform XML document transformations, the 
burden falls on the human to first analyse both the 
semantics and the structures of the source and target XML 
documents, and second to manual coding the 
transformations. Many solutions have been proposed to 
simplify and automate XML documents transformations. 
Approaches can be distinguished along the following two 
dimensions: Transformation specification and Schema 
matching.  

81



Transformation Specification 
Several simpler and highly declarative transformation 
languages (S.Krishnamurthi, K.Gray, and P.Grauke 2000), 
(X.Tang and F. Tompa 2001)  have been introduced as 
solutions to avoid programming. Special graphical tools 
have been also proposed to assist the specification of the 
transformations (E.Pietriga, J-Y.Vion-Dury, and V.Quint 
2001), (XSLWIZ 2001). See (A. Vernet 2002) for more 
examples of transformation languages and tools. These 
languages and tools are very useful in describing and 
specifying transformations. However, they still require 
developers to manually indicate mappings for each source 
and target pair. Manual mapping is time consuming and 
thus especially unacceptable for applications where the 
information sources change frequently.  
Schema Matching 

A serious obstacle for translating directly between two 
XML schemas, using languages like XSLT, is that a 
mapping between the two XML representations needs to 
be carefully specified by a human expert. Since the XML 
schemas can be very diverse, the mappings created by the 
expert are often complex. This complexity makes them 
hard to maintain when original XML schemas change. An 
alternative strategy that is used for reconciling XML data 
is based on schema matching techniques to automate the 
mapping process (H.Su, H.Kuno, E.A.Rundensteiner 
2001).  Schema matching is the task of finding 
correspondences between two heterogeneous schemas. 
Schema matching is not a new problem and has been the 
focus of database community. (S.Castano, A. Ferrara, G. 
S. Kuruvilla , V.D.Antonellis 2002) describes the 
ARTEMIS tool environment to support the analysis and 
integration of sets of heterogeneous schemas by measuring 
the similarity of element names, data types and structures.  
(L. Xu, D.W. Embley, 2003) offers a novel integration 
approach that uses semi-automatic schema matching to 
produce source-to-target mappings.  A recent survey of 
automatic schema matching (E. Rahm and P.A. Bernstein 
2001) classifies approaches respecting to the schemas 
information (element naming, structure, data types, 
integrity constraints, etc.) and auxiliary information 
(generally domain specific common terminologies or 
thesaurus) used to discover schema similarities. However 
a lot of work has been done in this field, several issues 
remain unsolved when schema matching is used in the 
context of XML documents transformations. Such issues 
will be discussed in section 2. 

1.3 Contribution of this paper 
This paper aims at identifying encountered problems when 
current schema matching approaches are used in the 
context of XML documents transformations, and will 
introduce conceptual modelling as a solution to address 
these problems. The primary contributions of our work 
include: 

 

 

 

 Unlike several approaches, we consider W3C XML 
Schemas and not DTDs. This makes the problem of 
XML schema matching more complex (we have to 
deal with features like typing, 
generalization/specialization, etc.) 

 We introduce a layered modelling approach aiming to 
separate semantics from the syntactic nature of XML 
schemas. Semantics are represented using a 
conceptual model describing schema concepts and 
semantic relationships among concepts. 

 Unlike current schema matching approaches, that 
generate numerical coefficients as schemas similarity 
measure, we will show how our layered modelling 
approach will enable the discovery of semantic 
relationships between schemas entities.  

 We will introduce a transformation framework that 
encompasses the whole XML documents 
transformation process (modelling XML schemas, 
semantic matching, and transformation script 
generation). 

The paper is organized in the following way. In section 2, 
we outline the limitation of current matching algorithms 
when applied in the context of XML documents 
transformations. Section 3 describes our proposed layered 
modelling approach for XML schemas. In Section 4 we 
present a taxonomy of XML Schemas heterogeneities and 
point a set of primitive transformation operations. Section 
5 deals with the matching process. Section 6 gives an 
example that illustrates our approach. We describe our 
prototype system in section 7. Finally, we conclude the 
paper with a discussion and future work.     

2 XML Schema matching problem 
Recently, several schema matching techniques have been 
proposed. It is handled in some systems through machine 
learning techniques (A.Doan, P. Domingos, A.Y.Halevy 
2001) to analyse data instances in order to predict element 
similarities.  In other systems element- and structure-level 
matching is performed such as in (J. Madhavan, P.A. 
Bernstein and E. Rahm 2001) where authors combine 
linguistic and structural matching to predict element 
similarity. However a lot of effort has been done in the 
field of schema matching, two problems have to be 
addressed when schema matching is used for XML 
documents transformations applications: scalability and 
Semantic relationships discovery.  

2.1 Scalability  
Before performing schema matching task, schemas are 
always modelled in an abstract way that reflects their 
content structure and semantics. As example, simple 
labelled trees are generally used to describe DTDs. The 
matching process is strongly influenced by adopted data 
model.  

 

 

 

82



A simpler data model with fewer data modelling 
constructs and constraints makes the task of matching 
easier, because it reduces conflict possibilities. As 
consequence, the transformation operations are simpler 
since the matching task involves fewer primitive 
operations.  However, the adoption of such data models 
has several limitations in modelling information resources. 
One important restriction is that simple data models are 
generally poor in terms of types and conceptual 
abstractions.  W3C XML Schemas add new features like 
user defined types and generalization / specialization 
relationships by means of substitution groups and 
subtyping mechanisms. To capture all XML schema 
features, we need a rich data model with complex 
modelling constructs and constraints. However the 
adoption of a complex data model present several 
advantages, it makes the task of matching complex. In (B. 
Omelayenko, and D. Fensel 2002) the authors prove that 
attempts to resolve all kind of conflicts (semantic conflicts, 
structural conflicts, etc.) within one transformation step 
generally causes a scalability problem. Such a solution 
would lead to complex set of mapping rules and 
consequently to possible performance problems. 

2.2 Semantic relationships discovery 
The key intuition of existing schema matching algorithms 
is to measure the similarity (linguistically and structurally) 
between the labels of elements.  The similarity is generally 
expressed in term of coefficient in [0,1]. For example, the 
similarity coefficient between the two elements 
“publication” and “book” could be 0.8. When applied to 
XML documents transformations, we need to identify 
transformation operations (eg., rename, merge, split, etc.), 
this can not be done based on numerical coefficients. On 
the contrary, in order to infer adequate transformation 
operations, we need semantic relationships between 
schemas entities (eg., equivalent, more general, 
incompatible, etc.), that take into account data semantics. 
Semantics is the interpretation human attribute to data 
according to their understanding of the real world. For 
example if we know that “book” (from a source schema 
S1) is equivalent to “publication” (from a target schema 
S2)”, instances of element “book” in S1 can be reused as 
instances for element “publication” in S2. To perform 
such matching, we need to map meanings of schema 
elements and not just their labels. An explicit and formal 
definition of the schema elements semantics and meaning 
is then required. Since XML Schema language, does not 
concentrate on the semantics of the content of XML 
documents, representing a logical data model that focuses 
on the syntactic structure of XML documents, we need to 
model XML schemas at the semantic level through a set of 
concepts and semantic relationships. 

2.3 New requirements 
Based on the above observations, to perform XML schema 
matching in the context of XML documents 
transformations, two new requirements for the matching 
algorithm have to be specified: 
• First, we have to take into consideration all the 
features introduced by W3C XML schemas within the 

matching task. For this, we need a rich data model that 
express typing, and conceptual abstractions. This has to be 
done without causing scalability problems. Let us imagine 
that two applications need to exchange complex data.  
Instead of dealing directly with the details of semantics,  
structure and serialization of data, they can organize the 
data exchange in a layered fashion. This approach seems to 
be a good candidate to first ensure that the data model is 
enough rich to cover all features of XML schemas and 
second to avoid scalability problem. Layered modelling 
approach has been used in different contexts. In order to 
ensure the interoperability between web applications, (S. 
Melnik, S. Decker 2000) suggest a layered model (“divide 
to conquer” philosophy), presented as a series of three 
layers (syntax, object and semantic layers). Authors in  (B. 
Omelayenko, and D. Fensel 2001) adopted a three layer 
modeling (syntax, data model and ontology) in order to 
reduce the complexity of  information integration task.   
• Second, the data model used to abstract the 
syntax of XML schemas has to give a semantic view that 
model XML schemas at the semantic level through a set of 
concepts and semantic relationships. Conceptual models 
provide a high level abstraction, being a good candidate to 
model XML schemas at semantic level. Conceptual 
modelling simplifies identification semantically related 
concepts because conceptual models have more clear 
semantics presenting the real word view independently of 
all implementation considerations.      

3 Layered Interoperability Model for XML 
Schemas (LIMXS) 
To reduce the complexity of the matching task and meet 
the new requirements introduced in section 2.3, we suggest 
a new data model for XML Schemas called LIMXS 
(Layered Interoperability Model for XML Schemas). 
LIMXS is essentially composed of two layers:  Semantic 
layer and Schema layer, as shown in figure 1. The 
Semantic layer gives a way to semantically model XML 
Schema using a conceptual modelling approach. The 
schema layer is mainly concerned with detailed XML 
Schema constructs (elements/attributes declaration, 
simple/complex type definitions, constraint specification, 
etc). A one-to-one mapping between the two layers is also 
considered to map concepts on the semantic layer to the 
corresponding XML Schema constructs within the schema 
layer.  

3.1 Semantic layer 
The goal of this layer is to offer a semantic view of source 
and target schemas. A semantic view is the real word view 
described in terms of concepts and semantic relationships 
independently of all implementation considerations. The 
semantic layer describes how data is structured and how 
data can be interpreted. Several attempts have been 
proposed to represent XML schema at semantic level. 
(L.Feng, E. Chang, and T. Dillon 2002) proposes a 
semantic network, which provides semantic modeling of 
XML through a set of atomic and complex nodes, 
representing real world objects; a set of directed edges, 
representing semantic relationships between objects; a set 
of labels for nodes and edges; and finally, a set of 
constraints defined over nodes and edges . Authors in (N. 

83



Routledge, L. Bird and A. Goodchild 2002) choose to 
conceptually modeling XML Schemas on the basis of the 
Unified Modeling Language (UML). An essential part of 
static UML is used to model XML Schemas. Other 
approaches (R. Xio, T. Dillon, E. Chang and L.Feng 2001 ) 
use object oriented methods to conceptually model XML 
Schemas. Our work is distinguished from the above ones 
in the following aspect. All these methods were used to 
offer a design methodology to write XML Schemas 
without exposing designers to low-level implementation 
details. As a first step a conceptual model or a semantic 
network is designed. Thanks to a set of mapping rules (eg. 
each concept corresponds to an XML Schema complex 
type), the XML serialization is then performed. In our 
work, we assume that there is no conceptual model 
available and re-engineering based on available logical 
XML schema will be necessary to obtain it. Partial 
inference of the data semantics is obtained from structures, 
namespaces, subtyping mechanisms, constraints, and 
substitution groups. System engineer intervention is then 
required to add semantics which can not be inferred from 
logical XML Schemas.  

 

 

 

 

 

 

 

 

 
 

 

 

 

3.1.1 Conceptual Meta-model 
The conceptual level is represented according to a 
conceptual meta-model that uses a subset of UML class 
diagram terminology (figure 2). A conceptual model 
consists of the following components: 
-  A set of concepts, representing real world objects 
sharing structure and semantics. Each concept has a name 
and an optionally set of properties. 
- A set of relationships, representing semantic 
relationships between objects. We distinguish: 
• generalisation (specialisation): It is a relationship 

between a more general concept C1 and a more 
specific one C2. It uses discriminator to show how 
concepts are extended (restricted). 
Generalisation/specialisation relationships are 

inferred thanks to XML Schema type 
extension/restriction mechanisms. 

• association: is a semantic relationship between two 
concepts meaning that both are conceptually at the 
same level. Associations are inferred thanks to XML 
Schema substitution group mechanism and reference 
integrity definitions (Key/Keyref). 

• aggregation: is a composition (part-whole) 
relationship between two concepts. Aggregation 
relationships are inferred from hierarchical structure 
expressed by means of “sequence”, “choice” and “all” 
constructs at schema level. 

-   A set of constraints, defining multiplicity constraints 
over concepts and relationships. 

3.1.2 Conceptual Model Re-engineering   
Conceptual model re-engineering is a bottom up process 
aiming to analyse logical XML Schemas and default 
semantics that they carry in order to obtain a conceptual 
model valid against the proposed meta model. We propose 
a set of rules based on default semantic interpretation of 
XML Schema constructs. These rules define the 
correspondences between schema constructs and 
conceptual meta-model constructs. We take into 
consideration relevant XML Schemas features such as 
Complex types, unnamed types, abstract  types, etc. Two 
distinct rules categories are defined according to the nature 
of constructs involved in the rule.  

Concept discovery Rules: are rules related to the 
discovery of concepts.  
Relation discovery Rules: are rules related with the 
discovery of relationships between concepts and their 
semantics. 

We do not further detail the process of conceptual model 
re-engineering in this paper. Figure 3 introduces examples 
related to concept discovery rules and relation discovery 
rules. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 2: Conceptual Meta Model  

Figure 1: Layered Interoperability Model 
for XML Schemas (LIMXS) 

84



3.2 Schema Layer 
To overcome the limitations of DTDs in modelling XML 
data, several languages, called schema languages, were 
introduced for describing XML documents logical 
structure.  

(D. Lee, W. Chu 2000) proposes a comparative analysis of 
such schema languages. In our work, we were first 
interested on W3C schema language features, but we 
notice that other proposed schema languages share the 
same features. As example, DSD 1.0 (N. Klarlund, A. 
Moller, M. I. Schwatzbach 2000) introduces user defined 
types, unordered sequences, etc. SOX 2.0 (A. Davidson, M. 
Fuchs, M. Hedin  1999)  allows simple types restriction 
and complex types extension. However, these languages 
share some common features, each schema language 
offers a set of constructs to describe XML information 
(e.g., W3C XML Schema uses a grouping construct 〈all〉 to 
specify the unordered sequence. In (C. Frankston, H. S. 
Thompson 1998), the 〈order='many'〉 attribute specifies 
that sub-elements can appear in any order).  However, they 
can share the same features; these schemas languages are 
heterogeneous at syntactic level. To take into 
consideration such languages within our work, the schema 
layer is composed of two sub layers:  the logical layer and 
the serialisation layer. The aim of the logical layer is to 
describe different schema languages constructs 
independently of syntactic details. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

3.2.1 The logical layer 
The logical level presents in an abstract and graphical 
way how XML schema constructs are combined to 
describe the information of the semantic layer. Features 
like ordering relationships, typing, and integrity 
constraints are described. The logical layer gives an object 
oriented view of the information independently of the used 
XML schema language. Figure 4 gives an example 
showing how simple XML schema types are represented at 
the logical level. To each simple type, corresponds a basic 
object having a unique ID. Each basic object has a basic 

content and a set of associated constraints. A basic content 
can be: 

- an atomic value: a value from the domains of basic 
data types (e.g., string, integer, date, etc.). 

 

- a constructional value: which can be a list value or a 
union value. A list value is an ordered collection of 
items having the same basic content. A union value 
allows any of members of a collection as the returning 
value.   

Constraints related to basic objects are uniqueness 
constraints, referential integrity constraints and domain 
constraints (e.g., restrict the range of numerical values by 
giving the maximal/minimal values). 

 

 

 

 

 

 

 

 

 

 

 

3.2.2 The serialisation layer 
This layer describes a specific implementation of data 
structures described in the logical model. It depends on a 
particular product or version. The serialization layer, in 
our context, uses the standard textual language defined by 
the World Wide Web (XML Schema Recommendation) or 
any other XML schema language.  

In next sections, we will show how our layered model 
(LIMXS) simplifies XML documents transformation 
process and improve the quality of matching results. 

4 Transformation Operations 
Based on the LIMXS model, we identify causes of 
heterogeneity between XML schema entities at different 
levels. We classify these causes into two categories: 
semantic heterogeneities, and logical heterogeneities.  

4.1 Semantic heterogeneities 
The distinction between two schemas is done based on the 
comparison of their respective semantic views. Semantic 
heterogeneities deal essentially with differences in 
structure (how are the data organized?) and differences in 
interpretation (what do the data mean?). For instance, 
different names (eg. author and writer) can be attached to 
the same concept in the two schemas. Let us imagine two 
schemas that represent information about persons and 

R1: For each element having a complex type or a user-defined simple 
types (defined as restriction of predefined simple types), create a 
concept (class) having as name the name of the element, and as 
multiplicity the one of the element.  
 
R2: For each abstract type, create a concept having as name the name 
of the type and as multiplicity the one of the type. Put abstract attribute 
to true. 

R1: For each nested element definition (within a sequence, choice or 
all), create an aggregation relationships with parent and child elements 
as concepts. 

R2: For each substitution Group definition, create an association 
relationship between the concepts of elements participating to the 
substitution group definition.  

Concept discovery rules 

Relation discovery rules 

Figure 4: Logical Meta Model  

Figure 3: Example of Rules for 
Conceptual Model Re-engineering  

85



their emails. In the first schema information is modeled by 
means of two aggregation relationships. The first relates 
each person to his mailbox and the second relates a 
mailbox to a set of mails. While in the second schema, only 
one relationship between person and mail is used.   

 Figure 5 gives further examples of semantic 
heterogeneities. 

4.2   Logical heterogeneities 
The richness of XML schema languages gives rise to a 
larger variety of possibilities to model the same concepts.  
For example, dates may be represented as strings in one 
schema, or in another schema as instances of the primitive 
type “Date”.  These conflicts are very difficult to solve, 
and require in general human intervention. In this case the 
mapping process provides several suggestions to the user 
based on some heuristics and a predefined library of 
logical transformation operations, so that the mapping 
process can continue. Figure 6 gives further examples of 
logical heterogeneities. 

4.3 Taxonomy of transformation operations 
According to the causes of heterogeneities described in the 
previous section, we propose a set of primitive 
transformation operations that are the building blocks that 
would enable schemas transformation. These primitive 
operations can be composed together to represent larger 
transformations. Moreover, we provide a library of 
predefined operations in order to deal with logical 
heterogeneities. 

4.3.1 Conceptual primitive operations 
Conceptual primitive operations concern concepts and 
relationships at the semantic layer. These operations 
include: 
o Add: add an entity to the target schema. Entities can be 

relationships, concepts and properties. 
o Delete: carries out the opposite transformation. 
o Merge: Two distinct entities are merged into one 

entity. Concepts like street, country and state can be 
separate in source schema and merged as address 
concept in target schema. Then the values of address 
in the target schema match a concatenation of values 
from source schema concepts. 

o Split: This is the reverse operation of merge. The 
values of target schema match then a decomposition 
of a source schema concept. 

o Rename: change concept and properties names. 
o Connect: The connect operation is one to one 

mapping that maps two equivalent entities without 
any transformation.  

4.3.2 Logical operations 
Logical heterogeneities are very difficult to resolve since 
they require extra information that only the user can 
provide. By analysing XML Schemas, we provide a set of 
common functions within a library that the user can easily 

modify or extend. Examples of such functions deal with 
type compatibility problem. Imagine that the target type is 
included in the source type. We suggest functions like 
rounding a real to an integer, truncating string to a given 
length, etc. Logical operations deal also with differences in 
schema constraints such as cardinality, default and Null 
values.  

5 Layered matching approach 
Map is defined as a schema manipulation operation that 
takes in input two heterogeneous schemas and returns a 
mapping that identifies corresponding entities in the two 
schemas. We propose a layered mapping approach 
according to our interoperability model. Imagine two 
XML enabled applications that need to exchange data. 
Instead of creating in a static manner a document 
specifying correspondences between schema entities, we 
propose a dynamic and incremental mapping process 
outlined in figure 7. Semantic matching aims to discover 
similarities expressed in term of semantic relationships 
between a source and target semantic views. Once 
semantic mapping is generated and validated by human 
intervention, the result is given to the logical layer, which 
performs matching at logical level. Matching at this level 
focuses on discovering and resolving logical conflicts such 
as representation differences (use of ordered lists 
(sequences) Vs choices), datatype conflicts, and 
constraints conflicts.  Finally, a transformation script can 
be automatically produced. The remaining of this section 
describes in detail the semantic matching algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Different naming (Exercise Vs PracticalExercice) 

Different structures 
• Single concept Vs merged concepts (Title Vs ShortTitle & 

extendedTitle) 

• Different granularity (course/teacher Vs 
course/department/teacher)  

• Aggregation conflicts (PersonalInfo as name & e-mail Vs 
PersonalInfo as name & address & e-mail) 

• Generalization conflicts (separate concepts assistant & 
teacher Vs a generalized concepts CourseResponsible and 
two subconcepts assistant & teacher ) 

Different naming (Author Vs Writer) 

Semantic conflicts 

Figure 5: Semantic heterogeneities 

Conflicts between model constructs: 

Different representations (ordered list “Sequence” Vs 
unordered list “All”) 
Different Types 
• One element has simple type, the other has complex type 
• Different Types  (date Vs string)  
• One type is defined with facets, the other is a predefined 

type 
Different constraints  (default values, Null values, Cardinality) 

Logical conflicts 

Figure 6: Logical heterogeneities 

86



Semantic matching 
So far, with the exception of (L.Serafini, P.Bouquet, 
B.Magnini and S. Zanobini 2003), none of the current 
matching approaches perform semantic matching. 
However authors outline the need to perform semantic 
matching, they restrict they work on hierarchical 
classifications (supporting only {is-a} relationships). The 
validity of the generated mappings is ensured by testing 
propositional satisfiability. Iterations are needed when 
matching results are not good. In our work, we do not 
restrict our selves to hierarchical classifications, on the 
contrary semantic matching involves rich conceptual 
models (with aggregation, association, generalization and 
specialization relationships). We do not use propositional 
satisfiability approach, but we infer semantic relationships 
based on the richness of conceptual model structures. 
Specific user input is interactively requested at critical 
points, and not just at post matching. This makes post 
matching easier, since not good matches are corrected 
while running the matching process and do not propagate. 
The key idea is that in semantic matching we explore the 
fact that schema semantics are explicitly described 
through concepts and semantic relationships. The result of 
semantic matching is a set of semantic mappings. We 
adopted a two phases (linguistic analysis and structural 
analysis) process that extracts semantic relationships 
between concepts.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linguistic analysis 

The first phase focuses on a linguistic analysis of concept 
meanings. We use WordNet (A.G. Miller 1995), an 
electronic lexical database where relations like homonymy, 
synonymy are available to relate word meanings.  By 
querying WordNet, we are able to define semantic 
relationships between concepts. We consider five 
semantic relationships including equivalent, general,  

 

specific, compatible and incompatible.  For example two 
concepts are equivalent if they are synonyms (e.g., 
Authors and Writer concepts).  

Structural Analysis 

The aim of the structural analysis is to extend semantic 
relationships discovered by linguistic analysis by 
examinating the organisation of data provided by the 
semantic views. The organisation of data is described 
through aggregation, association and generalisation 
relationships. Let us consider a simple example, WordNet 
querying gives that a source concept “book” is a specific 
concept of a more general target concept “publication”. If 
a source semantic view specifies that “monograph” is a 
restriction of “book”, then a semantic relationship 
“monograph is a specialisation of publication” can be 
inferred. Structural analysis involves several steps 
including aggregation analysis, generalisation analysis, 
specification analysis and association analysis.  

Semantic matching Result  

Semantic matching gives as output a set of semantic 
mapping elements. The key feature of our work is to 
provide a layered modelling approach that includes 
modeling of mappings and transformations.  For modeling 
mappings and translation of a source XML schema to a 
target XML schema, we use (1) the information 
interoperability model, (2) primitive transformation 
operations and (3) the library of transformation functions. 
A semantic mapping M is then a 6-Tuple <Mid, T, SE, TE, 
SR, COP, RM> where: 

- Mid is a unique identifier of the given mapping 
element.   

-  T is the type of the mapping element. Based on the 
conceptual meta model described in section 3.1.1, 
three types of mappings are considered. (1)concept 
mapping (relating concepts), (2) property mapping 
(relating properties), and (3) relation mapping 
(relating relations). See section 6 for a detailed 
example.  

- SE is a set of source entities (concepts, relations, and 
properties) involved in the mapping.  

- TE is a set of target entities (concepts, relations, and 
properties) involved in the mapping. We consider 
OneToOneMapping, OneToManyMapping, 
ManyToOneMapping  and ManyToManyMapping.  

- SR is a set of semantic relationships between entities 
being mapped.  

- COP  is a set of conceptual operations (defined in 
section 4.2.1). Each operation has a name and a set of 
constraints that represent the conditions that should be 
verified in order to execute the operation.  

- RM (Related mappings): this reflects how mappings 
are related and may be combined into more complex 
mappings. Several relations may hold between 
mappings: 
o Composition: is a relation specifying that a 

mapping is composed of other mappings. Example 
in section 6 illustrates a composition relationship 

Semantic 
Layer 

 XML data 

Information 
interoperability 
model for source 
XML schema 

Information 
interoperability 
model for target 
XML schema 

Mapping process  

SM 

LM 

DT 

Logical 
Layer 

Semantic 
Layer 

Logical 
Layer 

 XML data

Figure 7: The Three layered Matching approach   
SM: Semantic matching 
LM: Logical matching based on the previous generated semantic 
matching) 
DT: Data transformation: generation and execution of XSLT code 

87



between concept mapping “map11” and attribute 
mapping “map111”.  

o Generalization/specialization: allows one 
mapping to reuse definitions from another 
mapping and respectively to extend or restrict 
those definitions. Example in section 6 illustrates a 
generalization relationship between concept 
mappings “map11” and “map2”. 

6 Example 
Let us consider Figure 8 where parts of two XML schemas 
semantic views (conceptual models) are represented. Both 
conceptual models are taken from the university domain to 
keep the example simple.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We first begin to perform semantic matching. By querying 
WordNet, we generate a semantic relationship (0) 
concepts “staff” and “employee” are semantically 
equivalent.  A first mapping, having “mapp11” as ID, is 
then set between S1.staff and S2.employee. Properties of 
these concepts must be further mapped. S1.staff 
distinguishes between “First name” and “Last name” 
while S2.employee does not. Linguistic analysis gives a 
first semantic relationship (1) “First name” and “Last 
name” are specifications of “name”.  Structural analysis 
extracts semantic relationships (2) firstname is-property of 
staff, (3)lastname is-property of staff, (4) name is-property 
of employee. (0), (1), (2), (3),and (4) allow the system to 
suggest that the concatenation of “First name and Last 
name” and “name” are equivalent. Interactive user 
validation at this point, allows to create ManytoOne 
mapping (ID=map111) with merge transformation 
operation.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The semantic matching process will try then to map 
concepts S1.professor and S2.project-responsible, since 
structural analysis shows that concepts S1.professor and 
S2.project-responsible are sub concepts respectively of 
already equivalent concepts S1.staff and S2.employee. At 
this level a first suggestion is made by the system: 
S1.professor and S2.project-responsible are equivalent. 
Properties related to both concepts are then analysed. A 
shared property “salary” is found and linguistic analysis 
(WordNet) confirms that properties “topic” and “subject” 
are equivalent. The system can then conclude that 
S1.professor and S2.project-responsible are equivalent. A 
semantic mapping (map 2) is generated  as sub mapping of 
map11 (mapping between S1.staff and S2.employee).  

Map21 and map22 are respectively mappings between 
S1.professor’s property “salary” and 
S2.project-responsible’s property “salary” and 
S1.professor’s property “topic” and 
S2.project-responsible’s property “subject”. The 
transformation operations required are respectively 
connect and rename. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

<OneToOnemapping ID=”map11”> 
  <Conceptmapping> 
     <SourceConcept concept=”Staff”/> 
     <TargetConcept concept=”employee”/> 
     <Transformation> 
       <Operation name=”rename”/> 
     </transformation> 
     <HasMappings  ManyToOnemapping ID=”map111”/>
  <Conceptmapping/> 
<OneToOnemapping/> 
 
<ManyToOnemapping ID=”map111”> 
  <Attributemapping> 
     <SourceAttribute attribute=”FirstName”/> 
     <SourceAttribute attribute=”LastName”/> 
     <TargetAttribute attribute=”Name”/> 
           <Transformation> 
       <Operation name=”Merge”/> 
     </transformation> 
 <Attributemapping/> 
<ManyToOnemapping/> 

<OneToOnemapping ID=”map2” extendmapping=”map11”> 
  <Conceptmapping> 
     <SourceConcept concept=”professor”/> 
     <TargetConcept concept=”project-    
                               responsible”/> 
     <Transformation> 
       <Operation name=”rename”/> 
     </transformation> 
     <HasMappings  OneToOnemapping ID=”map21”   
                   OneToOnemapping ID=”map22”/> 
  <Conceptmapping/> 
<OneToOnemapping/> 

<OneToOnemapping ID=”map21”> 
  <Attributemapping> 
     <SourceAttribute attribute=”salary”/> 
     <TargetAttribute attribute=”salary”/> 
           <Transformation> 
       <Operation name=”connect”/> 
     </transformation> 
 <Attributemapping/> 
<OneToOnemapping/> 
 
 

Figure 8: Example of generated 
mappings and relations between 
mappings 

Source 
schema (S1) 

Target 
schema (S2)

Mapping 

<Mapping ID = “map1”> 
  <SourceSchema  source=”S1.xsd”/> 
  <TargetSchema   target=”S2.xsd”/> 
  <HasMappings  OneToOnemapping ID=”map11”/> 
</Mapping> 
 

88



 
 
 
 
 
 
 
 
 
 

 

Once semantic mappings are generated. The system deals 
with logical matching. Imagine that property salary in the 
source schema S1 is of type “Real”, while the property 
salary in the target schema S2 is of type “integer”. In this 
case the semantic mapping has to be augmented by a new 
transformation operation that round a real to an integer. 
An integer rounded from a real approximate the real but 
also all others that round the same integer. Before 
executing such transformation, user validation is needed. 
If the user has another suggestion like changing type 
integer to real in the target schema, the round operation 
will not occur otherwise the mapping “map21” will be 
incremented by a new operation “roundrealtointeger”.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7 The Prototype System 
The prototype system, we are developing, incorporating 
all the ideas discussed in the paper, consists of three 
transformation modules: Conceptualization toolkit, 
Matcher engine, and execution engine. Figure 9 outlines 
the whole system architecture. 

Conceptualization toolkit 

 For the generation of semantic and logical views from 
XML schemas, we aim to develop a conceptualization 
toolkit that will be composed essentially of two graphical 
tools: Semantic view editor and viewer, Logical view 
editor and viewer. These graphical tools will encourage 
the user to either add semantics or extend the generated 
views.  

Matcher engine 

We develop a Matcher engine to perform semantic and 
logical matching. The matcher engine uses additional 
modules: an interface for querying WordNet and a 
graphical user interface that allows the users to validate 
mappings generated by the system, and provide further 
domain constraints. We also provide a mapping evolution 
module. This module focuses on storing the generated 
mapping and on their synchronization with the changes in 
source and target schemas. Keeping mappings evolution 

allows their reusability. The goal is to avoid reapplying the 
mapping process every time schemas change.  

Execution engine 

The execution engine is responsible for parsing mapping 
results and generating automatically XSLT transformation 
scripts. It also permits the translation of data instances 
(XML files) valid against a source schema to instances 
valid against a target schema. 

8 Conclusion and Future Work 
Due to the extensive use of XML markup language in 
several domains, there has been a great interest on 
proposing rich data models (XMLSchemas) that reflects 
document semantics and structure. The existence of such 
rich schemas has made a large amount of heterogeneously 
XML documents widely available. In this framework, 
XML documents transformations are of major concern. 
Currently, to perform XML documents transformations, 
the burden falls on the human to first analyse both the 
semantics and the structure of the source and target XML 
documents, and second to manual coding the 
transformations using specific languages such as XSLT. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 Many solutions have been proposed to simplify and 
automate XML documents transformations, but none 
really encompass the over all process. This work proposes 
an approach for automating the transformation of XML 
documents. We have specially focused on two 
fundamental problems: How to deal with all features of  

<OneToOnemapping ID=”map21”> 
  <Attributemapping> 
     <SourceAttribute attribute=”salary”/> 
     <TargetAttribute attribute=”salary”/> 
           <Transformation> 
       <Operation name=”connect”/> 
       <Operation name=”roundrealtointeger”/> 
     </transformation> 
 <Attributemapping/> 
<OneToOnemapping/> 
 

Figure 9: Prototype architecture 

 
<OneToOnemapping ID=”map22”> 
  <Attributemapping> 
     <SourceAttribute attribute=”topic”/> 
     <TargetAttribute attribute=”subject”/> 
           <Transformation> 
       <Operation name=”rename”/> 
     </transformation> 
 <Attributemapping/> 
<OneToOnemapping/> 

89



XML schema without causing a scalability problem and 
how to discover semantic relationships between schema 
entities. For this end, we propose a layered data model that 
we call Layered Interoperability Model for XML Schemas 
(LIMXS). The proposed Model has two major advantages. 
In one hand, it is a rich model able to model all XML 
Schemas features such as typing, 
specialization/generalization relationships, namespaces, 
etc. In the other hand, it offers a semantic view and a 
logical view of XML schemas based on conceptual 
modelling. The semantic view described in term of 
concepts and semantic relationships gives an explicit and 
formal definition of the schema elements semantics and 
meaning, which allows us to map meanings of schema 
elements and not just their labels. The logical view 
describes schema constructs independently of syntactic 
details, and allows us to perform matching at logical level.  

In the future, we intend first to finalise the prototype 
system and especially the conceptualization toolkit and the 
execution engine.  We also plan to design an evaluation 
technique for quantifying XML Schema transformations 
based on cost of transformation operations in the case 
where multiple transformation strategies are possible.  

9 References 
XML 1.0. (1998) Extensible Markup Language (XML)   

Version 1.0.    World Wide Web Consortium.        
http://www.w3.org/TR/REC-xml.  

XML Schema. (2001) W3C Recommendation, “XML    
Schema Primer”, W3 Consortium, available at           
http://www.w3.org/TR/xmlschema-0, 2001. 

XSLT 1.0. (1999) W3C Recommendation. XSL   
Transformations XSLT Version 1.0, Available at 
http://www.w3.org/TR/xslt (June 2002). 

S.Krishnamurthi, K.Gray, and P.Grauke. (2000)    
 Transformation-by-example for XML. Proceeding of 
the Second International Workshop on Practical 
Aspects of Declarative Languages (PADL’00), Lecture 
Notes in Computer Science, Vol. 1735, pages 249-262. 

X.Tang and F. Tompa. (2001). 
 Specifying transformations  for structured documents. 
In proceeding of 4th International Worshop on Web and 
Databases (WebDB 2001), Pages 67-72. 

E.Pietriga, J-Y.Vion-Dury, and V.Quint.(2001). 
 Vxt: a visual approach to XML transformations. 
Proceeding of the ACM Symposium On Document 
Engineerin. 

XSLWIZ. (2001).  
 http://www.induslogic.com/products/xslwiz.html 

A. Vernet. (2002) XML transformation languages.        
http://www.scdi.org/~avernet/misc/xml-transformation 
 
H.Su, H.Kuno, E.A.Rundensteiner. (2001) Automating the   

transformation of XML Documents. Proceeding of the 
ACM Symposium On Document Engineering. 
 

Silvana Castano, Alfio Ferrara, G. S. Kuruvilla Ottathycal, 
Valeria De Antonellis (2002): A Disciplined 
Approach for the Integration of Heterogeneous XML 
Datasources. DEXA Workshops 2002: 103-110 

 

Li Xu, David W. Embley: Discovering Direct and Indirect 
Matches for Schema Elements. DASFAA 2003: 39-46 

E. Rahm and P.A. Bernstein. (2001). On Matching 
Schemas Automatically, Technical Report, Dep. Of 
Comp science, Univ of Leipzig.  

A.Doan, P. Domingos, A.Y.Halevy (2001). Reconciling 
schemas of disparate data sources: A machine learning 
approach. In SIGMOD’01. 

J. Madhavan, P.A. Bernstein and E. Rahm (2001). 
Generic Schema matching with Cupid. Proc. 27 th Int. 
Conf. On Very Large Data Bases (VLDB). 

B. Omelayenko, and D. Fensel (2002). Analysis of B2B 
Catalogue Integration Problems. Kluwer Academic 
Publisher. 270-277. 

S. Melnik, S. Decker (2000). A Layered Approach To 
Information Modelling and Interoperability On The 
Web. Proc. Of the workshop on the semantic Web at the 
4 th European Conference on Research and Advanced 
Technology for Digital Librrries ECDL. 

B. Omelayenko, and D. Fensel (2001)  Scalable Document   

 Integration for B2B Electronic Commerce. 
http://citeseer.nj.nec.com/452604.html 

L.Feng, E. Chang, and T. Dillon (2002). A Semantic 
Network- Based Design Methodology for XML 
Documents. ACM Transactions on Information Systems 
(TOIS) Volume 20 ,  Issue 4. Pages: 390 – 421.   

N. Routledge, L. Bird and A. Goodchild (2002). "UML 
and XML Schema", ADC'2002. 

R. Xio, T. Dillon, E. Chang and L.Feng (2001). Modeling 
and Transformation of Object Oriented Conceptual 
Models into XML Schema. DEXA 2001, LNCS 2113, 
Pages795-804. 

D. Lee, W. Chu (2000). Comparative analysis of six 
{XML} schema languages. SIGMOD Record (ACM 
Special Interest Group on Management of Data),  Vol 
29, num 3, pages 76-87. 

N. Klarlund, A. Moller, M. I. Schwatzbach, (2000). 
``DSD: A Schema Language for XML'', Proc. 3rd ACM 
Workshop on Formal Methods in Software Practice. 

A. Davidson, M. Fuchs, M. Hedin, (1999) ``Schema for 
Object-Oriented XML 2.0'', W3C. 
(http://www.w3.org/TR/NOTE-SOX) 

C. Frankston, H. S. Thompson. (1998) ``XML-Data 
reduced'', Internet Document. 
(http://www.ltg.ed.ac.uk/~ht/XMLData-Reduced.htm) 

L.Serafini, P.Bouquet, B.Magnini and S. Zanobini 
(2003).An Algorithm for Matching Contextualized 
Schemas via SAT. IRST Technical Report 0301-06, 
Instituto Trentino di Cultura. 

A.G. Miller (1995). WordNet: A lexical Database for 
English. ACM 38 (11). Pages 39-41.  

90


