
XDuce: A Statically Typed XML
Processing Language

HARUO HOSOYA
Kyoto University
and
BENJAMIN C. PIERCE
University of Pennsylvania

XDuce is a statically typed programming language for XML processing. Its basic data values are
XML documents, and its types (so-called regular expression types) directly correspond to document
schemas. XDuce also provides a flexible form of regular expression pattern matching, integrating
conditional branching, tag checking, and subtree extraction, as well as dynamic typechecking. We
survey the principles of XDuce’s design, develop examples illustrating its key features, describe its
foundations in the theory of regular tree automata, and present a complete formal definition of its
core, along with a proof of type safety.

Categories and Subject Descriptors: D.3.3 [Programming Languages]: Language Constructs and
Features—data types and structures

General Terms: Languages, Theory

Additional Key Words and Phrases: Type systems, XML, tree automata, subtyping

1. INTRODUCTION

XML is a simple, generic format for structured data that has been standardized
by the World-Wide Web Consortium [Bray et al. 2000]. Data (or documents) in
XML are ordered, labeled tree structures. The core XML standard imposes no
restrictions on the labels that appear in a given context; instead, each document
may be accompanied by a document type (or schema) describing its structure.1

1Many schema languages have been proposed. The original specification of XML defines a schema
language called DTD (Document Type Definition) [Bray et al. 2000]. Other schema languages

This work was supported by the Japan Society for the Promotion of Science (Hoyosa), the National
Science Foundation under NSF Career grant CCR-9701826 (Pierce), and a gift from Microsoft.
Authors’ addresses: H. Hosoya, Research Institute for Mathematical Sciences, Kyoto University
Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan; B. C. Pierce, Department of Com-
puter and Information Science, University of Pennsylvania, 200 South 33rd Street, Philadelphia,
PA 19104, email: bcpierce@cis.upenn.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 1533-5399/03/0500-0117 $5.00

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003, Pages 117–148.



118 • H. Hosoya and B. C. Pierce

The most common use of schemas by programs that manipulate XML is
for dynamic typechecking. Applications can use schema validators both to en-
sure that their input documents actually conform to their expectations and
to double-check their own outputs. A more ambitious approach that has re-
cently drawn the attention of many researchers is static typechecking—using
document schemas as the basis of compile-time analyses capable of ensuring
that invalid documents can never arise as outputs or intermediate states of
XML processing code [Cluet and Siméon 1998; Wallace and Runciman 1999;
Sun Microsystems 2001; Asami 2000; Meijer and Shields 1999; Fernández et al.
2001; Murata 1997; Milo et al. 2000; Papakonstantinou and Vianu 2000; Hosoya
and Pierce 2000].

In this article, we describe a statically typed XML processing language
called XDuce (officially pronounced “transduce”). XDuce is a functional lan-
guage whose primitive data structures represent XML documents and whose
types—called regular expression types—correspond to document schemas. The
motivating principle behind its design is that a simple, clean, and powerful
type system for XML processing can be based directly on the theory of regular
tree automata.

Tree automata are finite-state machines that accept trees, just as ordinary
regular automata accept strings. The mathematical underpinnings of tree au-
tomata are well understood [Comon et al. 1999]—in particular, the problem of
deciding whether the language accepted by one automaton is included in that
accepted by another (which corresponds to the familiar operation of subtyping
in programming languages) is known to be decidable, as are the intersection
and difference of tree automata (which turn out to be very useful for pattern
matching, as we describe below).

On the other hand, tree automata in full generality are quite powerful, and
these worst-case complexity of these fundamental operations is correspondingly
high (in particular, language inclusion checking can take exponential time in
the size of the automata [Seidl 1990]). The most important choice in the XDuce
design has been to accept this worst-case complexity, in return for a clean and
powerful language design, rather than imposing language restrictions to reduce
it. This choice entails significant work in the implementation to develop algo-
rithms that are efficient enough for practical use; our results in this area are
described in three companion articles [Hosoya et al. 2000; Hosoya and Pierce
2001; Hosoya 2003].

Another novel feature of XDuce is a powerful form of pattern matching de-
rived directly from the type system, called regular expression pattern matching.
Regular expression patterns combine conditional branching, tag checking, and
subtree extraction. They are related to the pattern matching constructs found
in many functional languages, but extend these constructs with the ability to
write “recursive patterns” that precisely describe trees of arbitrary size; also, ar-
bitrary type expressions may appear inside patterns, essentially incorporating
dynamic type-analysis of tree structures into the pattern matching mechanism.

include XML-Schema [Fallside 2001], RELAX NG [Clark and Murata 2001], and DSD [Klarlund
et al. 2000]. We use the word “schema” generically.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 119

In our prototype implementation of XDuce, most of the sophistication lies
in the algorithms for typechecking and for analysis of patterns; the back end
is a simple (and not terribly fast) interpreter. We have used this prototype to
develop a number of small XML-processing applications. During this devel-
opment, we often found that the typechecker discovered subtle programming
mistakes that would have been quite troublesome to find by hand. For example,
in XHTML, a table tag is required to have at least one tr (table row) tag in it
and, if the table is empty, the table tag itself must not exist at all. It is easy to
write code that violates these rules, and the static type system was helpful in
detecting such mistakes early. The source code of our implementation is publi-
cally available; interested readers are invited to visit the XDuce home page at
http://xduce.sourceforge.net.

In earlier work [Hosoya et al. 2000; Hosoya and Pierce 2001; Hosoya 2003],
we studied the consituent features of XDuce in isolation, concentrating on se-
mantic and algorithmic issues. The focus of this article is on the language de-
sign as a whole. We illustrate the key features of its type system and pattern
matching primitives and discuss the considerations motivating their design
(Sections 2 to 4), present a formal definition of the complete core language and
a proof of type soundness (Section 5), discuss a range of related work (Section 6),
and sketch ongoing extensions (Section 7).

2. BASIC CONCEPTS

This section introduces the basic features of the XDuce language: values, types,
pattern matching, and functions.

2.1 Values

Run-time values in XDuce are fragments of XML documents. These fragments
can be built from scratch or by combining smaller fragments, or can result from
destructing existing values using pattern matching.

For example, consider the following XML document.

<addrbook>
<person> <name> Haruo Hosoya </name>

<email> hahosoya@kyoto-u </email>
<email> hahosoya@upenn </email> </person>

<person> <name> Benjamin Pierce </name>
<email> bcpierce@upenn </email>
<tel> 123-456-789 </tel> </person>

</addrbook>

A node is written as a pair of an open tag <label> and its corresponding closing
tag </label>. The children of the node appear between these tags, and the
order of the children of a node is significant. The above document can thus
be described as a tree where the root node is labeled addrbook and contains
two nodes with label person. The first person contains a name and two emails;
similarly the second person contains a name, an email, and a tel. Each name,
email, or tel node contains a string.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



120 • H. Hosoya and B. C. Pierce

To be precise, each value in XDuce is a sequence of nodes.2 (I.e., the whole doc-
ument above is actually a singleton sequence; the sequence of children of each
node forms a single value.) XDuce provides several operations for constructing
such sequences. For example, here is a fragment of program code that produces
the document shown above.3

addrbook[
person[name["Haruo Hosoya"],

email["hahosoya@kyoto-u"],
email["hahosoya@upenn"]],

person[name["Benjamin Pierce"],
email["bcpierce@upenn"],
tel["123-456-789"]]]

An expression of the form l[e] constructs a singleton sequence of a label l
containing a sequence resulted from evaluating the expression e. Comma
is a binary operator that concatenates two sequences. Note that comma is
associative—both (e1,e2),e3 and e1,(e2,e3) produce the same sequence—we
therefore drop parentheses from such expressions. String literals are written
"· · ·". In addition to these operations, we also have a constructor () for creating
the empty sequence.

2.2 Types

Types are descriptions of sets of structurally similar values. For example, the
type

person[name[String], email[String], tel[String]]

describes values consisting of the single label person containing a sequence
of name, email, and tel labels, each containing a string. Now let us slightly
complicate this type.

person[name[String], email[String]*, tel[String]?]

The difference between this type and the previous one is that zero or more
emails can follow after the name label, as indicated by the “*,” and the tel label
may be omitted, as indicated by the “?”.

XDuce’s types are called regular expression types because they closely re-
semble ordinary string regular expressions, the only difference being that they
describe sequences of tree nodes, whereas string regular expressions describe
sequences of characters. As “atoms,” we have labeled types like label[T] (which
denotes the set of sequences containing a single subtree labeled label), base
types such as String, and the empty sequence type (). Types can be composed
by concatenation (comma), zero-or-more-times repetition (*), one-or-more-times
repetition (+), optionality (?), and alternation (|, also called union).

2Supporting XML attributes in XDuce is ongoing work. See Section 7 for a related discussion.
3The XDuce implementation supports two ways of creating values: use sequence constructors or
load an external XML document, for example, from the file system. For the latter case, we perform
a validation check of the incorporated document against an intended type.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 121

Type expressions can be given names in XDuce programs by type definitions.
For example:4

type Person = person[Name,Email*,Tel?]
type Name = name[String]
type Email = email[String]
type Tel = tel[String]

That is, the type named Person is defined to be an abbreviation for the type
person[Name,Email*,Tel?], which uses Name, Email, and Tel to refer to the
types associated with these names. Type definitions are convenient for avoiding
repetition of large type expressions in programs. More importantly, though,
they may be (mutually) recursive; we will discuss this possibility further in
Section 3.1.

2.3 Typechecking

XDuce uses types for various purposes. The most important is in checking that
the values that may be consumed and produced by each function definition are
consistent with its explicitly declared argument and result types. For example,
consider the following function definition.

fun make_person (val nm as String)(val str as String) : Person =
person[name[nm],

(if looks_like_telnum(str) then tel[str] else email[str])]

The first line declares that the function make person takes two parameters nm
and str of type String and returns a value of type Person. (The val keyword in
the function header is a signal that the following identifier is a bound variable.)
In the body, we create a tree labeled person that contains two subtrees. The first
is labeled name and contains the string nm. The second is labeled either tel or
email, depending on whether the argument str looks like a telephone number
or an email (according to some function looks like telnum defined elsewhere).
The typechecking of this function proceeds as follows. From the type String
of the variables nm and str, we can easily compute the type of each expression
in the body. A labeled expression has a labeled type; a concatenation expression
has the concatenation of the types of the subexpressions; an if expression has
the union of the types of the then and else branches. As a result, the type of
the whole body is this:

person[name[String], (email[String] | tel[String])]

Finally, we check that this type is a subtype of the annotated result type Person.

4Again, the XDuce implementation supports two ways of declaring types: use type definitions in
the XDuce native syntax or import existing DTDs from the external environment. Note that our
types are more general than DTD, for example, we allow the same label to have different contents
depending the context. See Section 3.3 for a related discussion. Also, note that type definitions
declare type names, not labels. Indeed, labels do not have to be declared at all (like record labels
or Lisp’s atomic symbols).

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



122 • H. Hosoya and B. C. Pierce

The next question, then, is when two types are in the subtype relation. The
standard answer would involve giving a collection of subtyping laws correspond-
ing to some intuitive notion of inclusion between sets of members. However, our
types based on regular expressions yield many algebraic laws (including asso-
ciativity of concatenation and union, commutativity of union, distributivity of
union over concatenation or labelling) and all of these play crucial roles in XML
processing as described in our previous paper [Hosoya et al. 2000]; enumerat-
ing all these laws as rules would make the specification rather complicated. We
therefore adopt a more direct strategy: we first define which values belong to
each type (the details are straightforward; see Section 5). We then say that one
type is a subtype of another exactly when the former denotes a subset of the
latter.5

This “semantic definition” yields a subtyping relation that is both intuitive
and powerful. For example, consider again the type from the example just above
and the Person type from the previous section. These types are syntactically
quite different. But we can easily check that they fall in the subtype relation,
since, in the first type, the sequence after the name is either one email (followed
by no tel) or one tel (preceded by zero emails); both of these cases are also
described by the second type.

The remaining question is how efficiently we can check subtyping. We know,
from the theory of finite tree automata, that this decision problem takes expo-
nential time in the general case. However, by choosing appropriate representa-
tions and applying a few domain-specific heuristics, we can obtain an algorithm
whose speed is quite acceptable in practice. This algorithm is described in detail
in Hosoya et al. [2000].

In the example above, the subtype checker was invoked to verify that the
actual type of a function’s body is a subtype of the programmer-declared result
type. Another use of subtyping is in checking the type of an argument to a
function call against the parameter type given by the programmer. For example,
if we have the function definition

fun print_fields (val fs as (Name|Tel|Email)*) : () =
...

we can apply it to an argument of the following type:

Name,Email*,Tel?

Note, again, that, though they are syntactically quite different, the argument
type and the parameter type are in the subtype relation (the ordering constraint
in the argument type is lost in the parameter type, yielding a strictly larger set).

5We should note a somewhat special fact about XDuce’s type system that makes this direct construc-
tion attractive. Since XDuce is a first-order language (functions cannot be passed as arguments to
other functions), the type system does not need to deal with arrow types, unlike most functional
languages. The absence of arrow types greatly simplifies the semantics of types in XDuce. Recently,
however, Frisch et al. [2002] have shown how the semantic construction can be extended to include
arrow types.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 123

2.4 Pattern Matching

So far, we have focused on building values. We now turn our attention to de-
composing existing values by pattern matching.

As a simple example, consider the following pattern match expression for
creating a URL string from a value labeled with the protocol name. (The binary
operator ^ is a string concatenation.)

match v with
www[val s as String] -> "http://" ^ s

| email[val s as String] -> "mailto:" ^ s
| ftp[val s as String] -> "ftp://" ^ s

This pattern match branches depending on the top label (www, email, or ftp)
of the input value and evaluates the corresponding body expression, which
prepends the appropriate string to the variable s, which is bound to the content
the label in the input value v.

In general, a pattern match expression takes an input value and a set of
clauses of the form “pattern -> expression.” Given an input value, the pattern
matcher finds the first clause whose pattern matches the value. It extracts the
subtrees corresponding to bound variables in the pattern and then evaluates the
corresponding body expression in an environment enriched with these bindings.

Patterns can be nested to test for the simultaneous presence of multiple
labels and extract multiple subtress. For example, the pattern

person[name[val n as String], email[val e as String]]

matches a person label whose content is a name label followed by an email label.
Also, the logical-or can be expressed by the union operator

email[val s as String] | tel[val s as String].

Indeed, XDuce patterns have exactly the same form as type expressions, except
that they may include variable binders of the form “val x as pattern” (which
matches the input value against pattern as well as binding the variable x to
the whole value). We demand that, for any input value, a pattern yields exactly
one binding for each variable (we call this condition linearity. See Section 5.4.2
for the precise definition.) Thus, a pattern like

email[val e as String] | tel[val t as String]

or

email[val e as String]*

is forbidden.
Since patterns are just types decorated with variable binders, we can even

use patterns to perform dynamic typechecking. For example, the pattern

person[Name, Email+, Tel+]

matches the subset of elements of Person that contain a value of type
Name followed by one or more values of type Email and then one or more

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



124 • H. Hosoya and B. C. Pierce

values of type Tel. This capability is beyond the expressiveness of pattern
matching facilities in conventional functional languages such as ML and
Haskell.

XDuce’s pattern matching has a “first-match” semantics. That is, a pattern
match expression tries its clauses from top to bottom and fires the first matching
one. This semantics is particularly useful to write default cases. For example,
in the following pattern match expression

match v with
person[name[val n as String], Email+, Tel+] -> ...

| person[name[val n as String], Any] -> ...

the first clause matches when the input person value contains both emails and
tels, and the second clause matches otherwise. (Any is a type that matches any
values. See Section 3.2.) If such overlapping patterns were not permitted, we
would have to rewrite the second pattern so as to negate the first one, which
would be quite cumbersome.

What if none of the clauses match? XDuce performs a static exhaustiveness
check so that such a failure can never arise. In Section 4, we discuss in de-
tail various static checks on patterns, including exhaustiveness (every value is
matched by some clause), irredundancy (every clause can match some value, so
that every clause body is reachable) and nonambiguity (every pattern yields a
unique binding for every value that it matches).

2.5 A Complete Example

Let us now look at a small but complete program. The task of this program
is to create, from an address book document, a telephone book document by
extracting just the entries with telephone numbers.

We first show the type definitions for input documents (partly repeated from
above)

type Addrbook = addrbook[Person*]
type Person = person[Name,Email*,Tel?]
type Name = name[String]
type Email = email[String]
type Tel = tel[String]

and output documents.

type TelBook = telbook[TelPerson*]
type TelPerson = person[Name,Tel]

The first thing we do is to load an address book document from a file and
validate it against the type Addrbook. (We do not assume loaded documents to
conform to any type.)

let val doc = load_xml("mybook.xml")
let val valid_doc = validate doc with Addrbook

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 125

We then extract the content of the top label addrbook and send it to the function
make tel book (defined below). Finally, we enclose the result with the label
telbook and save it to a file.

let val out_doc =
match valid_doc with

addrbook[val persons as Person*] ->
telbook[make_tel_book(persons)]

save_xml("output.xml")(out_doc)

The function make tel book takes a value ps of type Person* and returns a
value of type TelPerson*.

fun make_tel_book (val ps as Person*) : TelPerson* =
match ps with

person[name[val n as String], Email*, tel[val t as String]],
val rest as Person*

-> person[name[n], tel[t]], make_tel_book(rest)
| person[name[val n as String], Email*], val rest as Person*

-> make_tel_book(rest)
| ()

-> ()

The body of the function uses a pattern match to analyze ps. In the first case,
the input sequence has a person label that contains a tel label; we pick out
the name and tel components from the person, construct a new person label
with them, and recursively call make tel book to process the remainder of the
sequence. In the second case, the input sequence has a person label that does
not contain a tel label; we simply ignore this person label and recursively call
make tel book. In the last case, the input sequence is empty; we return the
empty sequence itself.

3. MORE ON TYPES

This section gives some examples of more interesting uses of XDuce types.

3.1 Recursive Types

Like most programming languages, XDuce supports recursive types for describ-
ing arbitrarily nested structures. Consider the following definitions.

type Fld = Rcd*
type Rcd = name[String], folder[Fld]

| name[String], url[String], (good[] | broken[])

(The form label[] is shorthand for label[()], where () is the empty sequence
type.) The mutually recursive types Fld (“folder”) and Rcd (“record”) define a
simple template for storing structured lists of bookmarks, such as might be
found in a web browser: a folder is a list of records, while a record is either a
named folder or a named URL plus either a good or a broken tag indicating
whether or not the link is broken.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



126 • H. Hosoya and B. C. Pierce

We can write another pair of types

type GoodFld = GoodRcd*
type GoodRcd = name[String], folder[GoodFld]

| name[String], url[String], good[]

which are identical to Fld and Rcd except that links are all good. Note that
GoodFld is a subtype of Fld (it describes values with the same structure, but
with stronger constraints).

3.2 Label Classes

The labeled types that we have seen so far have the form l[T] and describe
singleton sequences labeled exactly with l. XDuce actually generalizes such
types to allow more complex forms called “label class” that represent sets of
possible labels. (This idea is also present in other XML type systems such as
RELAX NG [Clark and Murata 2001].) The l in the form l[T] is a label class
representing a singleton set.

The label class ~ represents the set of all labels. Using ~, we can define a type
Any that denotes the set of all values:

type Any = (~[Any] | Int | Float | String)*

That is, any value can be any repetition of either any label containing any value
or any base value. (At the moment, XDuce supports only Int, Float, and String
as base types. If we added more base types, we would have to modify the above
definition of Any accordingly.)

We also allow a label class of the form (l1|..|ln), representing the choice
between several labels. Such label classes are useful for describing a labeled
type that has multiple possible labels, all with the same content type. For ex-
ample, HTML headings may be labeled h1 through h6, all with the content type
Inline:

type Heading = (h1|h2|h3|h4|h5|h6)[Inline]

Finally, we allow “negation” label classes of the form (̂l1|..|ln), which
represent the set of all labels except l1, . . . , and ln. For example, we can use
such label classes in the following way

match v with
^(h1|h2)[Inline]*, (h1|h2)[val c as Inline], Any -> ...

where we extract the content of the first h1 or h2 label in the given value,
ignoring all the other labels prior to this.

3.3 Union Types

Functionality similar to union types is provided in most schema languages for
XML. However, some schema languages make restrictions on what types can
be joined by a union, leading to significant differences in expressiveness. For
example, XML Schema [Fallside 2001] and the XML Query Algebra [Fernández

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 127

et al. 2001] require that the types to be unioned should have disjoint sets of
top-level labels. On the other hand, XDuce and RELAX NG [Clark and Murata
2001] impose no restriction.6

The main advantage of having no restriction is that we can express dependen-
cies between subtrees. Consider the following example (suggested by Murata).
Suppose that we are designing a schema for LATEX-like documents. We want
to express a division into structures such as chapter, section, and subsection,
with the following requirements. A chapter can contain only sections, a section
can contain only subsections, and so on. Also, both chapters and sections can
appear at the top level. One obvious way of implementing these division struc-
tures is to directly use labels chapter, section, etc., as in the following type
definitions.

type Top = (Chapter | Section | Text)*
type Chapter = chapter[(Section | Text)*]
type Section = section[(Subsection | Text)*]
type Subsection = subsection[...]

(Text represents normal texts and is assumed to be defined somewhere else.)
However, in some cases, we may prefer to use the same label div to represent

all divisions for programming convenience. To distinguish between different
kinds of divisions, we add a field kind containing a discriminating tag:

type Top = (Chapter | Section | Text)*
type Chapter = div[kind[chapter[]],

(Section | Text)*]
type Section = div[kind[section[]],

(Subsection | Text)*]
type Subsection = div[kind[subsection[]], ...]

Notice that, in a div label appearing at the top level (in either Chapter or
Section), the content of the kind label (either chapter[] or section[]) and the
type coming after it (either (Section|Text)* or (Subsection|Text)*) are inter-
dependent. That is, we cannot have both chapter[] in kind and a value of type
Subsection at the same time, for example. Such a dependency cannot be ex-
pressed in type systems that adopt the label-disjointness restriction mentioned
above.

When programming with this set of type definitions, we may wish to pro-
cess any division uniformly, forgetting the dependency just discussed. For this,
XDuce’s subtyping facility is useful. The type Top (which has the dependency)
is a subtype of the following type

type Top2 = div[kind[chapter[] | section[]],
(Section | Subsection | Text)*]*

6This difference corresponds to different kinds of tree automata. Types with the label-disjointness
restriction correspond to deterministic top-down tree automata, whereas those with no restriction
correspond to more general nondeterministic (top-down) tree automata. See Comon et al. [1999] for
more details.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



128 • H. Hosoya and B. C. Pierce

which collapses the dependency. This can be useful when we want to perform
exactly the same operation on each top-level div, whether it is a chapter or a
section (e.g., counting the maximum depth of divisions).

4. MORE ON PATTERN MATCHING

XDuce performs a number of static analyses on pattern matches: exhaustive-
ness, irredundancy, ambiguity checks, and local type inference. In this section,
we illustrate these analyses by example.

4.1 Exhaustiveness and Irredundancy Checks

During typechecking, XDuce checks each pattern match expression for
exhaustiveness—that is, it makes sure that every possible input value should
be matched by some clause. For example, suppose that the variable p has type
Person (defined as person[Name,Email*,Tel?]) and consider the following pat-
tern match.

match p with
person[Name, Email+, Tel?] -> ...

| person[Name, Email*, Tel] -> ...

The first clause matches person values with at least one email and the second
matches person values with one tel. This pattern match is not exhaustive since
it does not cover the case when the input person value contains neither an email
nor a tel. Thus, the XDuce typechecker rejects this pattern match. In order to
make it exhaustive, we could add the following clause.

| person[Name] -> ...

A related check is for irredundancy of pattern matches. XDuce rejects a pat-
tern match expression if it has a clause whose pattern will never be able to
match any input value. For example, consider the following pattern match.

match p with
person[Name, Email*, Tel?] -> ...

| person[Name, Email+, Tel] -> ...

This pattern match is redundant, since all values that might be matched by the
second clause are already covered by the first clause. Therefore, we report an
error for this pattern match.

It may appear that irredundancy checks are not particularly important since
this situation where a clause is completely covered by the preceding ones hap-
pens rather infrequently. However, irredundancy checks are also valuable for
detecting two other much sillier and more common kinds of mistakes. One
is misspelling of labels, which usually makes a clause never match any in-
put value. The other is misunderstanding of the structure among labels (e.g.,
switching the order of Email and Tel types in the above example), which also
tends to make a clause redundant. In many cases, these two can also be detected
by an exhaustiveness check since the values that are intended to be matched by
the clause are actually not covered. However, an exhaustiveness check becomes

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 129

useless when the pattern match contains a default case. For example, consider
the following

match v with
preson[Name, Email+, Tel] -> ...

| Any -> ...

where the label preson is a misspelling. An exhaustiveness check cannot find
the error since the pattern match is vacuously exhaustive, whereas an irredun-
dancy check can detect it since the first clause never matches.

In exhaustiveness and irredundancy checks, the theory of finite tree au-
tomata plays an important role. An exhaustiveness check is done by examining
whether “the set of values in the input type is included in the set of values
matched by each of the patterns.” Since patterns are essentially the same as
types, this is just a subtype check. Similarly, irredundancy is checked by exam-
ining whether “the set of values that are both in the input type and matched by
a pattern is included in the set of values matched by the preceding patterns.”
Here, we rely on the fact that we may always calculate the intersection of two
tree automata. A detailed discussion of the required algorithms can be found
in a companion paper [Hosoya and Pierce 2001].

The XML Query Algebra [Fernández et al. 2001] provides “case expressions”
for performing matching of input values against a series of patterns (similar to
our patterns but somewhat simpler). However, XML Query Algebra supports
neither exhaustiveness nor irredundancy checks. Exhaustiveness check would
not make sense in their setting, since their case expressions are syntactically
required to have a default case. On the other hand, irredundancy checks in the
style of XDuce seem to make sense in their setting.

4.2 Ambiguity Checking

We say that a pattern is ambiguous if it yields multiple possible “parses” of
some input value.

Given an input value and a pattern, pattern matching assigns each label in
the value to a correspondingly labeled subpattern. This assignment is called a
parse. For example, consider the following pattern match with the input type
(a[]|b[])*.

match v with
a[]*, (val x as b[]), (a[]|b[])* -> ...

The behavior of this pattern is to skip all the consecutive a labels from the
beginning of the input sequence, bind the variable x to the first b label after
these, and then ignore the remaining sequence of as and bs. Thus, the parse
yielded by this pattern matching assigns all the skipped a labels to the leftmost
a[] pattern, the first b label to the b[] pattern in the middle, the other a labels to
the rightmost a[] pattern, and the other b labels to the rightmost b[] pattern.
This pattern is unambiguous.

A pattern is ambiguous if it may yield multiple parses for some input value.
For example, the following is ambiguous.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



130 • H. Hosoya and B. C. Pierce

match v with
(a[]|b[])*, (val x as b[]), (a[]|b[])* -> ...

Take the input value b[],b[]. There are two parses for this value. One as-
signs the first b to the leftmost b[] pattern and the second b to the middle b[]
pattern. The other parse assigns the first b to the middle b[] pattern and the
second b to the rightmost b[] pattern. Note that, in the pattern match shown
first, the only possible parse for this input value is the second one. A more
formal definition of ambiguity can be found in Section 5.4.6.

Usually, an ambiguous pattern signals a programming error. However, we
have found that, in some cases, writing ambiguous patterns is reasonable. One
typical case is when the application program knows, from implicit assumptions
that cannot be expressed in types, that there is only one possible parse. For
example, suppose that we have a simple book database of type Book* where

type Book = book[key[String], title[String], author[String]],

where we assume that there is only one book entry with the same key field
value. We can extract a book with a specified key from this database by writing
the following pattern match:

match db with
Book*,
book[key["Pierce2002"],

title[val t as String],
author[val a as String]],

Book* -> ... .

Note that the above assumption for keys guarantees that the entry yielded by
this pattern match is unique.

Since writing a nonambiguous pattern is sometimes much more complicated
than an ambigous one, requiring disambiguation even in situations that do
not necessiate it can be a heavy burden for the user. (In the above pattern, we
would only have to replace the first occurrence of Book with a type representing
books with keys other than "Pierce2002". However, this could become more
cumbersome if keys have a complex structure.) Therefore, we decided to yield a
warning for ambiguity rather than an error. In the case that the user writes an
ambiguous pattern and ignores the warning, the semantics of pattern matching
is to choose an arbitrary parse among multiple possibilities (“nondeterministic
semantics”).7

4.3 Type Inference for Patterns

The type annotations on pattern variables are normally redundant. For
example, in the following pattern match taking values of type Person*,

7Previously, XDuce used a first-match policy to resolve ambiguity even within a single pattern
clause [Hosoya and Pierce 2001]. However, we decided to throw this idea away, first because patterns
behave in an quite unintuitive way once they become large, and second because guaranteeing first
match semantics makes the implementation more complicated. See Hosoya [2003] for more details.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 131

match ps with
person[name[val n as String], Email*, Tel?], val rest as Person*

-> ...
| ...

the type (String) of the variable n and the type (Person*) of the variable rest can
be deduced from the input type and the shape of the patterns. XDuce supports
a mechanism that automatically infers such type annotations.

Our type inference scheme is local and locally precise. By local, we mean
that the type of each pattern variable is inferred only from the input type
and the pattern itself. (We do not consider long distance dependencies, e.g.,
constraints on pattern variables arising from the expressions in the bodies of
the match branches.) By locally precise, we mean that, if we match all of the
values from the input type against the pattern, the inferred type for a pattern
variable precisely represents the set of values that the variable can be bound
to. (Note, again, that this is a semantic definition: the specification of type
inference depends on the dynamic semantics of pattern matching.) With type
inference, the example above can be rewritten as follows:

match ps with
person[name[val n], Email*, Tel?], val rest

-> ...
| ... .

From the examples we have seen, it might appear that, whenever a pattern
contains a binding of the form (val x as T), the inferred type for x is T itself.
It is not always the case, however—our type inference may compute a more
precise type than T. Formally, the syntactic form (val x) is an abbreviation for
(val x as Any)—that is, we continue to require type annotations on all pattern
variables, but we allow them to be larger than necessary. The actual types of
the variables are inferred by combining the types given by the programmer
with the types discovered by propagating the input type through the pattern.
For example, the pattern

match v with
(val head as ~[Any]), val tail -> ...

binds head to the first labeled value in the input sequence and tail to the
rest of the sequence. The types inferred for head and tail depend on the input
type. For example, if the input type is (Email|Tel)*, then we infer (Email|Tel)
for head and (Email|Tel)* for tail. If the input type is (Email*,Tel), then
we infer (Email|Tel) for head and (Email*,Tel)? for tail.8 This combination

8The power of the type inference scheme has been improved from the one described in our previous
paper [Hosoya and Pierce 2001]. In the previous scheme, we were able to infer precise types only
for variables in tail positions. For example, in the pattern

match v with (val head as ~[Any]), val tail

we could infer a precise type for tail but not for head (we simply extracted the type ~[Any] directly
from the pattern, which is less precise). This was due to a naiveness of the inference algorithm that

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



132 • H. Hosoya and B. C. Pierce

of declared and inferred structure is useful since it is often more concise to
write a rough pattern (like the above ~[Any] pattern) than a precise one. In
addition, if the input type is changed later on, we may not have to change
the pattern, since the type inference will recompute appropriate types for the
variables.

When a pattern match has multiple clauses, our type inference scheme takes
the first-match semantics into account. That is, in inferring types for pattern
variables for a given clause, the values that are already captured by the pre-
ceding clauses are excluded. For example, in the following pattern match with
the input type Person,

match p with
person[name[val n], Email*, tel[val t]]

-> ...
| person[val c]

-> ...

we infer the type (Name,Email*) for the variable c, since persons with a tel
are already taken by the first clause and only persons without a tel will reach
the second clause. For handling this form of “exclusion,” our type inference
computes a difference between the set of input values and the set of values
matched by the preceding patterns. Again, we exploit a closure property (closure
under difference) of finite tree automata. See Hosoya and Pierce [2001] and
Hosoya [2003] for details.

5. FORMAL DEFINITION OF THE CORE XDUCE LANGUAGE

This section presents a complete, formal definition of the core features
of XDuce—types, patterns, terms, typechecking, pattern matching, and
evaluation—and establishes basic soundness theorems. We assuming famil-
iarity with basic notations and techniques from type systems and operational
semantics (background on these topics may be found, for example, in Pierce
[2002]).

5.1 Labels and Label Classes

We assume given a (possibly infinite) set L of labels, ranged over by l. We then
define label classes as follows:

L ::= l specific label
˜ wildcard label
L|L union
L\L difference

we used at that time. However, since then, we have developed a new algorithm that overcomes this
limitation and have incorporated it in the current XDuce [Hosoya 2003].

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 133

The semantics of label classes is defined by a denotation function [[ · ]] mapping
label classes to sets of labels.

[[l]] = {l}
[[˜]] = L
[[L1|L2]] = [[L1]] ∪ [[L2]]
[[L1\L2]] = [[L1]] \ [[L2]]

We write l ∈ L for l ∈ [[L]].

5.2 Values

For brevity, we omit base values such as strings. (The changes required to add
them are straightforward.) A value v, then, is just a sequence of labeled values,
where a labeled value is a pair of a label and a value. We write () for the empty
sequence, l[v] for a labeled value, and v1,v2 for the concatenation of two values.

5.3 Types

5.3.1 Syntax. We assume given a countably infinite set of type names,
ranged over by X. Types are now defined as follows.

T ::= X type name
() empty sequence
T, T concatenation
L[T] labeling
T|T union
T* repetition

The interpretations of type names are given by a single, global set E of type
definitions of the following form:

type X = T,

The body of each definition may mention any of the defined type names (in
particular, definitions may be recursive). We regard E as a mapping from type
names to their bodies and write E(X) for the right-hand side of the definition of
X in E.

To ensure that types correspond to regular tree automata (rather than
context-free grammars), we impose a syntactic restriction that disallows re-
cursion “at the top level” of definitions. For a given type T, we define the set
S(T) of type names reachable from T at the top level as the smallest set satisfy-
ing the following:

S(T) =


S(E(X)) ∪ {X} if T = X
S(T1) if T = T1*
S(T1) ∪ S(T2) if T = T1, T 2 or T = T1|T 2
∅ otherwise.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



134 • H. Hosoya and B. C. Pierce

We then require that the set E of type definitions satisfies

X 6∈ S(E(X)) for all X ∈ dom(E).

The additional regular expression operators ? and + are obtained as syntactic
sugar:

T? ≡ T|()

T+ ≡ T,T*

5.3.2 Semantics. The semantics of types is given by the relation v ∈ T,
read “value v has type T”—the smallest relation closed under the following set
of rules.

() ∈ () (ET-EMP)

E(X) = T v ∈ T
v ∈ X (ET-VAR)

v ∈ T l ∈ L
l[v] ∈ L[T]

(ET-LAB)

v1 ∈ T1 v2 ∈ T2

v1,v2 ∈ T1,T2
(ET-CAT)

v ∈ T1

v ∈ T1|T2
(ET-OR1)

v ∈ T2

v ∈ T1|T2
(ET-OR2)

vi ∈ T for each i
v1, . . . , vn ∈ T* . (ET-REP)

5.3.3 Subtyping. A type S is a subtype of another type T, written S <: T, iff
v ∈ S implies v ∈ T for all v.

5.3.4 Intersection and Difference. A type U is an intersection of types S and
T, written by S ∩ T ⇒ U, iff v ∈ S and v ∈ T imply v ∈ U and vice-versa, for
all v. (There can be more than one intersection of two given types, but all will
describe the same set of values.) Similarly, a type U is a difference between types
S and T, S \ T ⇒ U, iff v ∈ S and v 6∈ T together imply v ∈ U and vice-versa, for
all v.

5.4 Pattern Language

5.4.1 Syntax. We assume a countably infinite set of pattern names, ranged
over by Y, and a countably infinite set of variables, ranged over by x. Pattern

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 135

expressions are now defined as follows:

P ::= Y pattern name
val x as P variable binder
L[P] label
() empty sequence
P, P concatenation
P|P choice
P* repetition

The bindings of pattern names to patterns are given by a fixed, global, mutually
recursive set F of pattern definitions of the following form:

pat Y = P

For technical convenience, we assume that F includes all the type definitions in
E, regarding the type expressions appearing in E as pattern expressions in the
obvious way. Conversely, we assume that E includes all the pattern definitions
in F with all the variable binders erased. We write tyof (P) for the type obtained
by erasing all variable binders from P. Pattern definitions must obey the same
well-formedness restriction as type definitions.

We allow the same abbreviations for regular expression operators (+ and ?).
Also, val x can be used to mean val x as Any, where we assume the following
fixed type definition in E.9

type Any = ~[Any]*

5.4.2 Linearity. Let reach(P) be the set of all variable bindings reachable
from P—that is, the smallest set satisfying the following:

reach(P) = BV(P) ∪
⋃

Y∈FN(P)

reach(F (Y)),

where BV(P) is the set of variables bound in P and FN(P) is the set of pattern
names appearing in P. We say that a pattern P is linear iff, for any (reachable)
subphrase P′ of P, the following conditions hold.

—x 6∈ reach(P1) if P′ = val x as P1.
—reach(P1) ∩ reach(P2) = ∅ if P′ = P1,P2.
—reach(P1) = reach(P2) if P′ = P1|P2.
—reach(P1) = ∅ if P′ = P1*.

In the following, we assume that all patterns are linear.

5.4.3 Semantics. We describe the semantics of patterns by first defining
the relation v ∈ P⇒ V, read “v is matched by P, yielding V,” where an environ-
ment V is a finite mapping from variables to values (written x1:v1,...,xn:vn).

9If we include base types in the formalization, we need to use the definition of Any given in
Section 3.2.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



136 • H. Hosoya and B. C. Pierce

The concatenation of environments binding distinct variables is written with a
comma.

v ∈ P⇒ V

v ∈ (val x as P)⇒ x : v, V
(EP-AS)

() ∈ ()⇒ ∅ (EP-EMP)

F (Y) = P v ∈ P⇒ V

v ∈ Y⇒ V
(EP-VAR)

v ∈ P⇒ V l ∈ L
l[v] ∈ L[P]⇒ V

(EP-LAB)

v1 ∈ P1 ⇒ V1 v2 ∈ P2 ⇒ V2

v1, v2 ∈ P1,P2 ⇒ V1,V2
(EP-CAT)

v ∈ P1 ⇒ V

v ∈ P1|P2 ⇒ V
(EP-OR1)

v ∈ P2 ⇒ V

v ∈ P1|P2 ⇒ V
(EP-OR2)

vi ∈ P⇒ Vi for each i
v1, . . . , vn ∈ P*⇒ V1, . . . , Vn

(EP-REP)

Note that linearity ensures that environments that are concatenated in the
conclusions of rules EP-AS, EP-CAT, and EP-REP have different domains (e.g.,
x 6∈ dom(V) always holds in rule EP-AS).

5.4.4 Exhaustiveness. The following definitions of exhaustiveness, irre-
dundancy, non-ambiguity, and type inference for pattern-match expressions
are all made with respect to an “input type” T describing the set of values that
may be presented to the expression at run time.

A list P1, . . . , Pn of patterns is exhaustive with respect to T, written
“TB P1, . . . , Pn : exhaustive,” iff, for all v, v ∈ T implies v ∈ Pi ⇒ V for some
Pi and V.

5.4.5 Irredundancy. A list P1, . . . , Pn of patterns is irredundant with re-
spect to T, written “TB P1, . . . , Pn : irredundant,” iff, for all Pi, there is a value
v ∈ T such that v 6∈ P j for 1 ≤ j ≤ i − 1 and v ∈ Pi ⇒ V for some V.

5.4.6 Nonambiguity. We define nonambiguity in terms of the parsing re-
lation v ∈u P, which intuitively means that “P parses v uniquely” (or “there is a
unique derivation for the relation v ∈ P ⇒ V”). The parsing relation is defined

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 137

by the following rules.

v ∈u P

v ∈u (val x as P)
(EUP-AS)

() ∈u () (EUP-EMP)

F (Y) = P v ∈u P

v ∈u Y
(EUP-VAR)

v ∈u P l ∈ L
l[v] ∈u L[P]

(EUP-LAB)

v = v1,v2 for unique v1, v2
v1 ∈u P1 v2 ∈u P2

v ∈u P1,P2
(EUP-CAT)

v ∈u P1 v 6∈ tyof (P2)
v ∈u P1|P2

(EUP-OR1)

v 6∈ tyof (P1) v ∈u P2

v ∈u P1|P2
(EUP-OR2)

v = v1,..,vn for unique v1, . . . , vn
vi ∈u P for each i

v ∈u P*
(EUP-REP)

That is, these rules are similar to those for the matching relation (without
environments) except that EUP-CAT and EUP-REP ensure that the input se-
quence can be split uniquely at concatenation and repetition patterns, and that
EUP-OR1 and EUP-OR2 ensure that the input can be matched exactly one of
the choices.

Now, a pattern P is nonambiguous with respect to a type T, written “TB P :
nonambiguous,” iff, for all v ∈ T and v ∈ tyof (P), we have v ∈u P.

This definition of nonambiguity is similar to strong nonambiguity for string
regular expressions [Sippu and Soisalon-Soininen 1988] except that we treat
sequences of trees rather than strings, and that we consider nonambiguity for a
given restricted set of input values rather than for all input values.10 Sippu and
Soisalon-Soininen reduce the nonambiguity problem for regular expressions to
the LR(0) property for context-free grammars. We use a more direct algorithm
based on product construction [Hosoya 2003]. Discussions on various kinds of
ambiguity for regular expressions and the relationship among them can be
found in Brüggemann-Klein [1993].

5.4.7 Pattern Type Inference. The goal of pattern type inference is to com-
pute the “range” of a pattern, defined as follows. A type environment0 describes
the range of a pattern P with respect to type T, written “TB P⇒ 0,” iff, for all x

10The design space for definitions of nonambiguity is rather large, and we have not yet explored it
fully; we have given here a tentative simple specification.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



138 • H. Hosoya and B. C. Pierce

and v, we have

v ∈ 0(x) iff there exists a value u ∈ T such that u ∈ P⇒ V for some V
with V(x) = v.

5.5 Term Language

A program comprises a set of type definitions, a set of pattern definitions, a set
of function definitions, and a term with which evaluation starts. Type and pat-
tern definitions were described in the previous section. This section introduces
functions and terms.

5.5.1 Syntax. We assume given a countably infinite set of function names,
ranged over by f. The definitions of functions are given by a fixed, global, mu-
tually recursive set G of function definitions of the following form.

fun f(P) : T = e

For brevity, we treat only one-argument functions here; the extension to multi-
argument functions is routine. Note that both the argument pattern (which
provides the names and types of the bound variables) and the result type are
given explicitly.

The syntax of terms, e, is defined by the following grammar.

e ::= x variable
l[e] label
() empty sequence
e, e concatenation
f(e) application
match e with P->e pattern match

We write P->e as an abbreviation for the n-ary form P1->e1 | ... | Pn->en.
We also allow the following shorthands.

let P=e1 in e2 ≡ match e1 with P->e2

if e1 then e2 else e3 ≡ match e1 with True[]->e2 | False[]-> e3

e1;e2 ≡ let Any=e1 in e2

For simplicity, we assume that the variables bound by patterns are all distinct.
(Of course, we can always α-convert an arbitrary program so as to satisfy this
condition.)

5.5.2 Typing Rules. The typing relation 0 ` e ∈ T, pronounced “e has type
T under environment 0,” is defined by the following rules.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 139

0(x) = T

0 ` x ∈ T (TE-VAR)

0 ` () ∈ () (TE-EMP)

0 ` e ∈ T
0 ` l[e] ∈ l[T]

(TE-LAB)

0 ` e1 ∈ T1 0 ` e2 ∈ T2

0 ` e1, e2 ∈ T1, T2
(TE-CAT)

fun f(P) : T = e2 ∈ G 0 ` e1 ∈ U U <: tyof (P)
0 ` f(e1) ∈ T (TE-APP)

0 ` e ∈ R
RB P1, . . . , Pn : exhaustive
RB P1, . . . , Pn : irredundant

∀i.


R \ (tyof (P1)| . . . |tyof (Pi−1))⇒ S
SB Pi : nonambiguous
SB Pi ⇒ 0i
0, 0i ` ei ∈ Ti


0 ` match e with P->e ∈ T1| . . |Tn

(TE-MATCH)

As we discussed in Section 4.3, when performing type inference for a clause Pi,
we use the difference operation to exclude the values matched by the preceding
patterns from the input type R. We also check the ambiguity of each clause with
respect to the same difference type—that is, our definition of ambiguity does
not consider values that the pattern will never be used to match.

We then have a single rule for judging when the definition of a function f is
well typed, written ` fun f(P) : T = e.

tyof (P)B P⇒ 0

0 ` e ∈ S S <: T

` fun f(P) : T = e.
(TF)

5.5.3 Evaluation Rules. The semantics of terms is defined by a “big step”
evaluation relation V ` e ⇓ v. The rules for the evaluation relation are all
standard; the only interesting case is the rule for pattern matching, which uses
the semantics of patterns defined above.

V ` x ⇓ V(x) (EE-VAR)

V ` () ⇓ () (EE-EMP)

V ` e ⇓ v

V ` l[e] ⇓ l[v]
(EE-LAB)

V ` e1 ⇓ v1 V ` e2 ⇓ v2

V ` e1,e2 ⇓ v1,v2
(EE-CAT)

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



140 • H. Hosoya and B. C. Pierce

V ` e1 ⇓ v
fun f(P) : T = e2 ∈ G

v ∈ P⇒ W W ` e2 ⇓ w

V ` f(e1) ⇓ w
(EE-APP)

V ` e ⇓ v
v 6∈ P1 . . . v 6∈ Pi−1 v ∈ Pi ⇒ W

V, W ` ei ⇓ w

V ` match e with P->e ⇓ w
(EE-MATCH)

Note that because of the assumption that all bound variables are distinct, all
concatenated environments are ensured to have different domains.

5.6 Type Soundness

We conclude this treatment of core XDuce by sketching a proof of type sound-
ness. As usual, there are two parts to the proof: subject reduction (a well-typed
term evaluates to a value inhabiting the expected type) and progress (a well-
typed term does not get stuck).

THEOREM 5.1 (SUBJECT REDUCTION). Suppose ` fun f(P) : T = e for all func-
tion definitions in G. If ∅ ` e ⇓ w and ∅ ` e ∈ T, then w ∈ T.

(Note that the statement of subject reduction involves both of the typing
relations defined earlier: the “syntactic” expression-typing relation ∅ ` e ∈ T
and the “semantic” value-typing relation w ∈ T.)

PROOF. We prove the following stronger statement:

If V ` e ⇓ w and 0 ` e ∈ T with 0 ` V, then w ∈ T.

Here, 0 ` V means that dom(0) = dom(V) and V(x) ∈ 0(x) for each x ∈ dom(0).
The proof proceeds by induction on the derivation on V ` e ⇓ w. (We show
just the most interesting cases—the ones for function application and pattern
matching. All the other cases follow by straightforward use of the induction
hypothesis.)

Case. e = f(e1) V ` e1 ⇓ v fun f(P):T = e2 ∈ G
w ∈ P⇒ W W ` e2 ⇓ w

Since 0 ` e1 ∈ U by TE-APP, we obtain v ∈ U by the induction hypothesis.
Further, since U <: tyof (P) by TE-APP, we have v ∈ tyof (P) by the definition of
subtyping. From tyof (P)B P ⇒ 0′ by TF and the definition of type inference,
0′ ` W. Finally, since 0′ ` e2 ∈ S and S <: T by TF, the induction hypothesis
together with subtyping yields w ∈ T.

Case. e = match e′ with P->e V ` e′ ⇓ v
v 6∈ P1 . . . v 6∈ Pi−1 v ∈ Pi ⇒ W V,W ` ei ⇓ w

Since 0 ` e′ ∈ R by TE-MATCH, v ∈ R by the induction hypothesis. Also, since
R\(tyof (P1)| . . . |tyof (Pi−1))⇒ S by TE-MATCH, the definition of difference implies
v ∈ S. Further, SB Pi ⇒ 0i by TE-MATCH, the definition of type inference yields

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 141

0i ` W and therefore 0, 0i ` V, W. Finally, since TE-MATCH gives 0, 0i ` ei ∈ Ti,
we obtain w ∈ Ti by the induction hypothesis. The result follows since Ti <:
T1| . . . |T n.

Since we have chosen a big-step semantics, we need to be a little careful
about what it means for a term to get stuck. Naively, we might simply say “e is
stuck if it is not the case that V ` e ⇓ v for any v.” But this amounts to saying
that e is stuck if there is no finite derivation of V ` e ⇓ v, which is not quite
what we want: a finite derivation may fail to exist either because e gets stuck or
because it diverges. To precisely capture the notion that “e gets stuck in a finite
number of steps,” we define the stuck evaluation relation V ` e 6 ⇓, inductively,
as follows.

—V ` l[e] 6 ⇓ if V ` e 6 ⇓.
—V ` e1, e2 6 ⇓ if either V ` e1 6 ⇓ or V ` e2 6 ⇓.
—V ` f(e1) 6 ⇓ if

(1) V ` e1 6 ⇓, or
(2) V ` e1 ⇓ v and v 6∈ P, where fun f(P) : T = e2 ∈ G, or
(3) V ` e1 ⇓ v and v ∈ P⇒ W and W ` e2 6 ⇓, where fun f(P) : T = e2 ∈ G.

—V ` match e with P->e 6 ⇓ if
(1) V ` e 6 ⇓, or
(2) V ` e ⇓ v and v ∈ Pi 6⇒ W for all i, or
(3) V ` e ⇓ v and for some i,

v 6∈ P1 · · · v 6∈ Pi−1 v ∈ Pi ⇒ W V, W ` ei 6 ⇓.
Notice that the base cases are the second case for function applications and

the second case for the match expression, where the input value does not match
the pattern.

THEOREM 5.2 (PROGRESS). Suppose ` fun f(P) : T = e for all function defini-
tions in G. Then ∅ ` e ∈ T implies not ∅ ` e 6 ⇓.

PROOF. We obtain the result by proving the following stronger statement:

If V ` e 6 ⇓, then there are no 0 and T such that 0 ` e ∈ T and 0 ` V.

The proof of this statement goes by induction on the given derivation of V ` e 6 ⇓.
We show just the interesting cases; the rest proceed by straightforward use of
the induction hypothesis.

Case. e = f(e1) fun f(P):T′ = e2 ∈ G
V ` e1 ⇓ v v ∈ P⇒ W W ` e2 6 ⇓

Suppose, for a contradiction, that 0 ` e ∈ T and 0 ` V for some 0, T. Then, for
some S, we have 0 ` e1 ∈ S and S <: tyof (P), by TE-APP. By subject reduction,
we have v ∈ S and therefore v ∈ tyof (P). In addition, we have, by assumption,
` fun f(P) : T′ = e2, which implies tyof (P)B P⇒ 0′ and 0′ ` e2 ∈ T′. The former
together with v ∈ tyof (P) and v ∈ P ⇒ W implies 0′ ` W. But, by the induction
hypothesis, there are no 0′′ and T′′ such that 0′′ ` e2 ∈ T′′ and 0′′ ` W—a
contradiction.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



142 • H. Hosoya and B. C. Pierce

Case. e = match e′ with P->e V ` e′ ⇓ v ∀i. v 6∈ Pi

Suppose that 0 ` e ∈ T and 0 ` V for some 0, T. Then, from TE-MATCH,
0 ` e′ ∈ R and RB P1, . . . , Pn : exhaustive. By subject reduction, v ∈ R. Together
with the definition of exhaustiveness, this implies that v ∈ Pi ⇒ W for some i
and W, which contradicts the assumption.

Case. e = match e′ with P->e V ` e′ ⇓ v
v 6∈ P1 . . . v 6∈ Pi−1 v ∈ Pi ⇒ W V,W ` ei 6 ⇓

Suppose that 0 ` e ∈ T and 0 ` V for some 0, T. Then, from TE-MATCH,
0 ` e′ ∈ R. By subject reduction, v ∈ R. Since v 6∈ P j for j = 1, . . . , i − 1, we
have v ∈ R \ tyof (P1) \ . . . \ tyof (Pi−1). TE-MATCH also tells us that (R \ tyof (P1) \
. . . \ tyof (Pi−1))B Pi ⇒ 0i. Together with v ∈ Pi ⇒ W, we obtain 0′ ` W; hence,
0, 0′ ` V, W. Furthermore, from TE-MATCH, we have 0, 0′ ` ei ∈ T. But, by
the induction hypothesis, there are no 0′′ and T′′ such that 0′′ ` ei ∈ T′′ and
0′′ ` V, W—a contradiction.

6. RELATED WORK

Static typing of programs for XML processing has been approached from several
different angles. One popular idea is to embed some schema language for XML
into an existing typed language, translating document types into class hierar-
chies (in an object-oriented language) or algebraic datatypes (in a functional
language); such embeddings are sometimes called data bindings. Examples
of the data-binding approach include HaXML [Wallace and Runciman 1999],
Relaxer [Asami 2000], and JAXB [Sun Microsystems 2001]. (There are a large
number of software products implementing similar ideas; a comprehensive list
can be found at Bourret [2001].) The advantage of this approach is that it can be
carried out entirely within an existing language. The cost is that XML values
and their corresponding schemas must somehow be translated into the value
and type spaces of the host language; this usually involves adding layers of
“tagging” that were not present in the original XML documents; this inhibits
subtyping and makes programming somewhat less flexible.

The XML processing language XMλ, designed by Meijer and Shields, has
basically followed this approach but made a major improvement in flexibility
by introducing type-indexed rows [Meijer and Shields 1999; Shields and Meijer
2001]. In their type system, a union type T|U in a DTD is represented by a sum
type where each summand is tagged by its type (T or U) itself (whereas most
systems in the mapping approach uses a fixed label determined by the order
that T or U appears or by some name mangling based on the top-level tags of T
or U). Thus, union in XMλ is commutative, just as in XDuce. This mechanism
does not validate some other useful subtyping laws, such as associativity and
distributivity of unions (which XDuce does). On the other hand, MLλ’s row
polymorphism achieves some additional flexibility in a different direction. For
example, they can write a polymorphic function of type ∀X 6∈ {T, U}. (T|X) →
(U|X) (e.g., a function that changes a specific label T to U but leaves the rest of
the elements unchanged), which conveys the typing constraint that the type X

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 143

unioned with T in the input is exactly the same as the type unioned with U in the
output. Such typing constraints cannot be represented using just subtyping.

The query language YAT [Cluet and Siméon 1998; Kuper and Siméon 2001]
includes a type system similar to regular expression types. Like XDuce, YAT
offers a notion of subtyping for flexibility. However, they adopt a somewhat
more restrictive subtyping relation, for example, they do not allow a[T|U] to be
a subtype of a[T]|a[U] (but do allow the other way). This choice was determined
by their design goal of attaining efficient layout for large XML databases.

Since its initial publication, our work on XDuce has influenced a number of
proposals by other researchers. Fernandez et al. [2001] proposed XML Query
Algebra for the basis of XML query processing and optimization, and they
use our regular expression types in their type system and our subtyping al-
gorithm in their early implementation. (They are currently working on a W3C-
standardized language XQuery based on their early proposal. Their recent
paper reports another approach to combine named and structural subtyping
[Siméon and Wadler 2003].) Frisch et al. [2002] have made a significant exten-
sion to XDuce in their XML processing languageCDuce. In particular, their type
system treats higher-order functions as well as intersection and complementa-
tion type operators. Our work on regular expression types has also stimulated
schema language designs. In particular, Clark’s schema language TREX [Clark
2001] adopted a large part of our definition of types; these were carried over
into the ISO standard schema language RELAX NG [Clark and Murata 2001]).

At the theoretical level, there have been a number of proposals of typecheck-
ing algorithms for various XML processing languages. Milo et al. [2000] have
studied a typechecking problem for a general framework called k-pebble tree
transducers, which can capture a wide range of query languages for XML. In
a related vein, Papakonstantinou and Vianu [2000] present a typechecking al-
gorithm for the query language loto-ql by using extensions to DTDs. Murata
[1997] has developed a typechecking algorithm for his document transforma-
tion language with powerful pattern matching. Tozawa [2001] has pursued a
typechecking technique for a subset of XSLT. The types used in the techniques
in these papers are based on tree automata and are conceptually identical to
those of XDuce. On the other hand, the type checking algorithms presented in
these papers are “semantically complete” (i.e., given a program, an input type,
and an output type, the algorithm returns “yes” exactly when the documents
produced by the program from the input type always have the output type),
while XDuce’s is not (since XDuce is Turing complete, demanding this level of
precision makes the problem undecidable).

Our investigation of regular expression types was originally motivated by an
observation by Buneman and Pierce [1998] that untagged union types corre-
spond naturally to forms of variation found in semistructured databases. The
main differences from the present work are that they study unordered record
types instead of ordered sequences and do not treat recursive types.

Pattern matching can be found in a wide variety of languages and in a va-
riety of styles. One axis for categorization is how many bindings a pattern
match yields. In the all-matches style, a pattern match yields a set of bind-
ings corresponding to all possible matches. This style is often used in query

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



144 • H. Hosoya and B. C. Pierce

languages [Deutsch et al. 1998; Abiteboul et al. 1997; Cluet and Siméon 1998;
Cardelli and Ghelli 2001; Neven and Schwentick 2000; Fankhauser et al. 2001]
and document processing languages [Clark 1999; Neumann and Seidl 1998;
Murata 1997]. In the single-match style, a successful match yields just one
binding. This style is the one commonly found in functional programming lan-
guages [Milner et al. 1990; Leroy et al. 1996; Peyton Jones et al. 1993], and is
the one we have followed in XDuce. We are still experimenting with this as-
pect of the language, however, and hope to incorporate some form of all-match
patterns in its successor, Xtatic.

Another axis for comparing pattern matching primitives is the expres-
siveness of the underlying “logic.” Several papers have proposed extension
of ML-like pattern matching with recursion [Fähndrich and Boyland 1997;
Queinnec 1990] with essentially the same expressiveness as ours. Some query
languages and document processing languages use pattern matching mech-
anisms based on tree automata [Neumann and Seidl 1998; Murata 1997] or
monadic second-order logic (which has a strong connection to tree automata)
[Neven and Schwentick 2000], and therefore they have a similar expressive-
ness to our pattern matching. TQL [Cardelli and Ghelli 2001] has a powerful
pattern matching facility based on Ambient Logic [Cardelli and Gordon 2000].
Since Ambient Logic allows arbitrary logical operators (union, intersection,
and complementation), this suggests that its expressiveness should be similar
to tree automata. However, an exact comparison is difficult, since their underly-
ing data model is unordered trees. On the other hand, pattern matching based
on regular path expressions, popular in query languages for semistructured
data [Deutsch et al. 1998; Abiteboul et al. 1997; Cluet and Siméon 1998], is less
expressive than tree automata. For instance, these patterns cannot express
constraints like “match subtrees that contain exactly these labels.” Both tree
automata and regular path expressions can express extraction of data from
an arbitrarily nested tree structure (although, with the single-match style,
the usefulness of such deep matching is questionable; a related discussion
can be found in our previous paper on pattern matching [Hosoya and Pierce
2001]).

Thiemann has proposed a technique to encode DTDs by Haskell’s type classes
and thereby statically ensure the validity of dynamically generated XML doc-
uments [Thiemann 2002]. His technique is implemented as a pure Haskell
library, requiring no language extension. On the other hand, his proposal is
limited to generating documents and provides no facility to deconstruct or an-
alyze input XML documents.

Christensen et al. [2002a] have designed a domain-specific language
<bigwig> for programming interactive Web services [Brabrand et al. 2002]
and its successor. They employ an interprocedural flow analysis for stat-
ically validating XML documents produced by programs [Brabrand et al.
2001]. Their analysis is, unlike ours, capable of checking programs with
no type annotations. They have a unique programming feature called tem-
plates, which are documents with gaps and allow us to fill other document
fragments (or even other templates) in them. Although JWig currently has
no support for processing input documents, they also propose a mechanism

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 145

called gapify, which turns an input document (without gaps) into a template
[Christensen et al. 2002b].

7. CONCLUSIONS

XDuce is a typed programming language that takes XML documents (sequences
of nodes) as primitive values. It provides constructors and deconstructors (pat-
tern matching) for such sequences and uses regular expression types for describ-
ing their structure statically. The correspondence between types and finite tree
automata gives the language a powerful mathematical foundation, leading to
a simple, clean, and flexible design.

We regard XDuce as a good first step in the direction of “native program-
ming language support” for XML. However, a number of significant issues re-
main to be considered before its innovations can be offered to mainstream XML
programmers.

First, the XDuce type system needs to be extended to handle common features
found in real-world schema languages. One is a support for XML attributes.
Among different styles of treatments, we adopt RELAX NG’s approach [Clark
and Murata 2001], which symmetrically handles constraints on elements and
attributes. Murata and the first author of the present paper have just figured
out the imposed algorithmic issues [Hosoya and Murata 2002]. Another issue
that has to be addressed is typing for unordered data, which are useful for
representing records, for example. A clean solution is to introduce so-called
shuffle (or interleave) operator as in RELAX NG. However, it is an open question
whether we can test inclusion or compute intersection or difference with a
reasonable efficiency.

Second, in writing programs more substantial than trivial XML trans-
formations, we almost always need other kinds of data structures than se-
quences, such as hash tables and arrays. For this, we are now pursuing the
direction of taking some existing popular programming language (such as
Java or C#) and mixing its type system with regular expression types. In
this way, we can avoid reinventing existing language features and libraries,
as well as easily invite people who have been working on XML with such
languages.

Third, with such a mixed type system, we will need several more advanced
typing features. One is parametric polymorphism. (Currently, neither Java or
C# supports this, but since they are planning to do so, we will have to figure
out how to deal with it.) Another is typing for imperative operations on XML
data. Currently, XDuce disallows modification of values and this might be too
rigid for many programmers. Technically, both parametric polymorphism and
destructive operations are nontrivial.

We are now working on the design of a successor to XDuce, named Xtatic,
which aims to address these issues in the context of a C# extension with regular
expression types and pattern matching.

ACKNOWLEDGMENTS

Our main collaborator in the XDuce project, Jérôme Vouillon, contributed
a number of ideas, both in the design presented here and in the XDuce

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



146 • H. Hosoya and B. C. Pierce

implementation. We are also grateful to the other XDuce team members
(Peter Buneman, Vladimir Gapayev, Michael Levin, and Phil Wadler). We have
learned a great deal from discussions with the DB Group and the PL Club at
Penn and with members of Professor Yonezawa’s group at Tokyo.

REFERENCES

ABITEBOUL, S., QUASS, D., MCHUGH, J., WIDOM, J., AND WIENER, J. L. 1997. The Lorel query language
for semistructured data. Int. J. Dig. Lib. 1, 1, 68–88.

ASAMI, T. 2000. Relaxer. http://www.asahi-net.or.jp/~dp8t-asm/java/tools/Relaxer/index.
html.

BOURRET, R. 2001. XML data binding resources. http://www.rpbourret.com/xml/XMLData-

Binding.htm.
BRABRAND, C., MøLLER, A., AND SCHWARTZBACH, M. I. 2001. Static validation of dynamically gener-

ated HTML. In Workshop on Program Analysis for Software Tools and Engineering (PASTE’01).
BRABRAND, C., MøLLER, A., AND SCHWARTZBACH, M. I. 2002. The <bigwig> project. ACM Trans. Inter.

Tech. (TOIT).
BRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M., AND MALER, E. 2000. Extensible markup language

(XMLTM). http://www.w3.org/XML/.
BRÜGGEMANN-KLEIN, A. 1993. Regular expressions into finite automata. Theoret. Comput. Sci. 120,

197–213.
BUNEMAN, P. AND PIERCE, B. 1998. Union types for semistructured data. In Proceedings of the

International Database Programming Languages Workshop. Lecture Notes in Computer Science,
vol. 1686. Springer-Verlag, New York.

CARDELLI, L. AND GHELLI, G. 2001. A query language for semistructured data based on the am-
bient logic. In Proceedings of the 10th European Symposium on Programming. Lecture Notes in
Computer Science, vol. 2028. Springer-Verlag, New York, pp. 1–22.

CARDELLI, L. AND GORDON, A. D. 2000. Anytime, anywhere. Modal logics for mobile ambients.
In Proceedings of the 27th ACM Symposium on Principles of Programming Languages. ACM,
New York, 365–377.

CHRISTENSEN, A. S., MøLLER, A., AND SCHWARTZBACH, M. I. 2002a. Extending Java for high-level
web service construction. ACM Trans. Inter. Tech. (TOIT).

CHRISTENSEN, A. S., MøLLER, A., AND SCHWARTZBACH, M. I. 2002b. Static analysis for dynamic xml.
In PLAN-X: Programming Language Technologies for XML.

CLARK, J. 1999. XSL Transformations (XSLT). http://www.w3.org/TR/xslt.
CLARK, J. 2001. TREX: Tree Regular Expressions for XML. http://www.thaiopensource.

com/trex/.
CLARK, J. AND MURATA, M. 2001. RELAX NG. http://www.relaxng.org.
CLUET, S. AND SIMÉON, J. 1998. Using YAT to build a web server. In Proceedings of the International

Workshop on the Web and Databases (WebDB).
COMON, H., DAUCHET, M., GILLERON, R., JACQUEMARD, F., LUGIEZ, D., TISON, S., AND TOMMASI, M.

1999. Tree automata techniques and applications. Draft book; available electronically on
http://www.grappa.univ-lille3.fr/tata.

DEUTSCH, A., FERNANDEZ, M., FLORESCU, D., LEVY, A., AND SUCIU, D. 1998. XML-QL: A Query Lan-
guage for XML. http://www.w3.org/TR/NOTE-xml-ql.

FÄHNDRICH, M. AND BOYLAND, J. 1997. Statically checkable pattern abstractions. In Proceedings
of the International Conference on Functional Programming (ICFP). 75–84.

FALLSIDE, D. C. 2001. XML Schema Part 0: Primer, W3C Recommendation. http://www.w3.

org/TR/xmlschema-0/.
FANKHAUSER, P., FERNÁNDEZ, M., MALHOTRA, A., RYS, M., SIMÉON, J., AND WADLER, P. 2001. XQuery

1.0 Formal Semantics. http://www.w3.org/TR/query-semantics/.
FERNÁNDEZ, M. F., SIMÉON, J., AND WADLER, P. 2001. A semi-monad for semi-structured data. In

Proceedings of 8th International Conference on Database Theory (ICDT 2001), J. V. den Bussche
and V. Vianu, Eds. Lecture Notes in Computer Science, vol. 1973. Springer-Verlag, New York,
263–300.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



XDuce: A Statically Typed XML Processing Language • 147

FRISCH, A., CASTAGNA, G., AND BENZAKEN, V. 2002. Semantic subtyping. In Proceedings of the 17th
Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, Los
Alamitos, Calif.

HOSOYA, H. 2003. Regular expression pattern matching—A simpler design. Tech. Rep. 1397,
RIMS, Kyoto University, Kyoto, Japan.

HOSOYA, H., AND MURATA, M. 2002. Validation and Boolean operations for attribute-element con-
straints. In Programming Languages Technologies for XML (PLAN-X). 1–10.

HOSOYA, H. AND PIERCE, B. C. 2000. XDuce: A typed XML processing language (preliminary re-
port). In Proceedings of 3rd International Workshop on the Web and Databases (WebDB2000).
Lecture Notes in Computer Science, vol. 1997. Springer-Verlag, New York, 226–244.

HOSOYA, H. AND PIERCE, B. C. 2001. Regular expression pattern matching for XML. In Proceed-
ings of the 25th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, New York, 67–80.

HOSOYA, H., VOUILLON, J., AND PIERCE, B. C. 2000. Regular expression types for XML. In Proceedings
of the International Conference on Functional Programming (ICFP). 11–22. (Full version under
submission to TOPLAS.)

KLARLUND, N., MøLLER, A., AND SCHWARTZBACH, M. I. 2000. DSD: A schema language for XML.
http://www.brics.dk/DSD/.

KUPER, G. M. AND SIMÉON, J. 2001. Subsumption for XML types. In Proceedings of the International
Conference on Database Theory (ICDT’2001). London, England.

LEROY, X., VOUILLON, J., DOLIGEZ, D., GARRIGUE, J., REMY, D., AND VOUILLON, J. 1996. The Ob-
jective Caml system. Software and documentation available on the Web, http://pauillac.

inria.fr/ocaml/.
MEIJER, E. AND SHIELDS, M. 1999. XMλ: A functional programming language for constructing and

manipulating XML documents. Submitted to USENIX 2000 Technical Conference.
MILNER, R., TOFTE, M., AND HARPER, R. 1990. The Definition of Standard ML. The MIT Press,

Cambridge, Mass.
MILO, T., SUCIU, D., AND VIANU, V. 2000. Typechecking for XML transformers. In Proceedings of

the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. ACM,
New York, 11–22.

MURATA, M. 1997. Transformation of documents and schemas by patterns and contextual condi-
tions. In Principles of Document Processing ’96. Lecture Notes in Computer Science, vol. 1293.
Springer-Verlag, 153–169.

NEUMANN, A. AND SEIDL, H. 1998. Locating matches of tree patterns in forests. In Proceedings of
the 18th Symposium on Foundations of Software Technology and Theoretical Computer Science.
Lecture Notes in Computer Science, vol. 1530. Springer-Verlag, New York, 134–145.

NEVEN, F. AND SCHWENTICK, T. 2000. Expressive and efficient pattern languages for tree-structured
data. In Proceedings of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems. ACM, New York, 145–156.

PAPAKONSTANTINOU, Y. AND VIANU, V. 2000. DTD Inference for Views of XML Data. In Proceedings
of the 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
(Dallas, Tex). ACM, New York, 35–46.

PEYTON JONES, S. L., HALL, C. V., HAMMOND, K., PARTAIN, W., AND WADLER, P. 1993. The Glasgow
Haskell compiler: A technical overview. In Proceedings of the UK Joint Framework for Information
Technology (JFIT) Technical Conference.

PIERCE, B. C. 2002. Types and Programming Languages. MIT Press, Cambridge, Mass.
QUEINNEC, C. 1990. Compilation of non-linear, second order patterns on s-expressions. In Pro-

gramming Language Implementation and Logic Programming, 2nd International Workshop
(PLILP’90). Lecture Notes in Computer Science. Springer-Verlag, New York, 340–357.

SEIDL, H. 1990. Deciding equivalence of finite tree automata. SIAM J. Comput. 19, 3 (June),
424–437.

SHIELDS, M. AND MEIJER, E. 2001. Type-indexed rows. In Proceedings of the 25th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (London, England).
ACM, New York.

SIMÉON, J. AND WADLER, P. 2003. The essence of XML. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages.

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.



148 • H. Hosoya and B. C. Pierce

SIPPU, S. AND SOISALON-SOININEN, E. 1988. Parsing theory. In EATCS Monographs on Theoretical
Computer Science. Vol. 1. Springer-Verlag, New York.

SUN MICROSYSTEMS, I. 2001. The Java architecture for XML binding (JAXB). http://java.sun.
com/xml/jaxb.

THIEMANN, P. 2002. A typed representation for html and xml documents in Haskell. J. Funct.
Prog. 12, 425, 393–433.

TOZAWA, A. 2001. Towards static type inference for XSLT. In Proceedings of ACM Symposium on
Document Engineering. ACM, New York.

WALLACE, M. AND RUNCIMAN, C. 1999. Haskell and XML: Generic combinators or type-based trans-
lation? In Proceedings of the 4th ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP‘99). ACM SIGPLAN Notices, vol. 34-9. ACM, New York, 148–159.

Received July 2002; revised February 2003; accepted February 2003

ACM Transactions on Internet Technology, Vol. 3, No. 2, May 2003.


