
Automating XML Document Structure Transformations

Paula Leinonen
University of Kuopio

Department of Computer Science
P.O.B 1627

FIN-70211 Kuopio

leinonen@cs.uku.fi

ABSTRACT
This paper describes an implementation for syntax-directed
transformation of XML documents from one structure to
another. The system is based on the method which we have
introduced in our earlier work. That work characterized cer-
tain general conditions under which a semi-automatic trans-
formation is possible.
The system generates semi-automatically a transforma-

tion between two structures of the same document class.
The system gets source and target DTDs as an input. There
is a tool for a user to define a label association between the
elements of the DTDs. From the two DTDs and from the
label association, the system generates the transformation
specification semi-automatically. The system has a tool to
help the user to select a correct translation if the target DTD
produces several possible structures.
Implementation of the transformation is based on the top-

down tree transducer. From the transformation specification
the system produces an XSLT script automatically.

Categories and Subject Descriptors
F.3.4 [Mathematical Logic and Formal Languages]:
Formal Languages—classes defined by grammars or automata,
grammars and other rewriting systems; I.7 [Computing
Methodologies]: Document and Text Processing

General Terms
Documentation, Languages

Keywords
Document Structure Transformation, XML, XSLT

1. INTRODUCTION
XSLT [10], a recommendation of the World Wide Web

Consortium is a powerful language for transforming XML

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’03, November 20–22, 2003, Grenoble, France.
Copyright 2003 ACM 1-58113-724-9/03/0011 ...$5.00.

documents [11] and it has several implementations. Its draw-
back is that every time when a structure of XML document
should be transformed to follow some other structure defi-
nition, a new XSLT program has to be written. In addition
to XSLT, many other languages and approaches for format-
ting and transforming documents have been introduced [2,
3, 6]. For avoiding writing a new program for each new
transformation needed, some simpler definition languages
and visualizing tools have been developed [9, 8, 5].
This paper describes a prototype for an implementation

based on the method introduced in [7]. In our previous
work, we sketched the semi-automatic method for so called
local, hierarchical and dense tree transformation. The method
defines a general transformation between two structures of
the same document class. Documents which belong to the
same document class normally have nearly the same ele-
ments so that it is reasonable to try to generate the auto-
matic transformation. The transformation is based on the
tree transducer [4].
In Section 2, we present some definitions related to our

method. Section 3 describes the implementation for XML
documents. Section 4 concludes the article.

2. HIERARCHICAL, LOCAL AND DENSE
TRANSFORMATIONS

This section defines basic notions of the method. More
strict definitions for the theoretical basis of the method and
the algorithms to which the implementation is based on, can
be found in [7].
Structure definition of an XML can be given as a docu-

ment type definition (DTD) that is an extended context-free
grammar in which the right-hand sides of productions are
extended and restricted regular expressions. An extended
context-free grammar (ECFG) is a tuple G = (N,Σ, P, S)
where N is a finite set of nonterminal symbols, Σ is a finite
set of terminal symbols, disjoint from N and P is a finite
set of production schemata and the nonterminal S is the
sentence symbol.
Each production schema is of the form A → E, where A is

a nonterminal and E is a regular expression over V = N∪Σ.
The language L(G) defined by an ECFG G is L(G) = {w ∈
V ∗|S ⇒∗ w}. When u′ = u1Au2 ∈ V ∗, A → E ∈ P and
v ∈ L(E), we say that the string u1vu2 can be derived from
the string u′ and denote the derivation by u′ ⇒ u1vu2.
Derivations of a CFG can be represented in graphical form

as a tree. A derivation tree [1] for a CFG is an ordered, la-
beled tree where the root node is labeled by the start sym-

26

bol, the leaf nodes are labeled by terminal symbols or by an
empty string denoted by ε and each interior node is labeled
by a nonterminal. If A is a nonterminal labeling some inte-
rior node and X1, X2, . . . , Xn are the labels of the children
of that node from left to right, then A → X1X2 . . . Xn is a
rule. Here, X1, X2, . . . , Xn stand for a symbol that is either
a terminal or a nonterminal. As a special case, if A → ε
then a node labeled A has a single child labeled ε.
A local, hierarchical and dense structure transformation

of documents can be implemented using a tree transducer
[4]. A finite state tree transducer M = (Q, V1, V2, X, q0, δ)
consists of a finite set Q of states, a ranked input alphabet
V1, a ranked output alphabet V2, a set of variables X, the
initial state q0 ∈ Q, and rules of the form

q : t(X1, . . . , Xm) → t′(q1 :Xi1 , . . . , qn :Xin)

replacing a tree with state q at root and X1, . . . , Xm at
frontier by a tree with Xi1 , . . . , Xin and states q1, . . . , qn

at frontier, where Xij ∈ {X1, . . . , Xm}.
The whole transformation is obtained by starting at initial

state at root and applying the rules recursively until leaves
are reached at final state. For exact definitions, see [7].
We are interested in transformations from the set of deriva-

tion trees of the grammar G1 to the set of derivation trees
of the grammar G2.
The concept of label association defines a relation of “cor-

responding” elements between the source and target gram-
mars. For the alphabets V1 and V2, a label association is
a relation in λ ⊆ V1 × V2. The associated labels of non-
terminals must be labels of the same type, like terminating
nonterminals or repeating nonterminals.
Consider two grammars G1 and G2 and a label association

λ from V1 to V2 between these grammars. A node association
is a relation ν between the nodes of a derivation tree t1 by
grammar G1 and a derivation tree t2 by grammar G2 such
that the labels of related nodes are associated in the label
association λ.
We say that a tree transformation τ is hierarchical with

respect to a label association λ, if for any t2 ∈ τ (t1), there
is a node association ν respecting λ such that whenever
(x, u) ∈ ν, (y, v) ∈ ν, y being a descendant of x implies
v being a descendant of u.
The tree transformation τ is (c,d)–local (or local) for con-

stants c and d and for label association λ, if there is a node
association ν such that whenever the distance of nodes x
and y in the path from the root to a leaf in t1 is less than
c and (x, u) ∈ ν, (y, v) ∈ ν, the distance of u and v in t2 is
less than d.
The tree transformation τ is e-dense (or dense) with re-

spect to constant e and label association λ, if whenever a
node has label X associated in λ (i.e. having Y such that
(X, Y) ∈ λ), it has a descendant associated in λ within dis-
tance e, or it does not have any associated descendants.
Having a local tree transformation guarantees that a finite

transformation can be defined. A hierarchical tree trans-
formation can be built top-down. Denseness means that
transformable elements are so closely situated that the next
transformable part can be found by a finite lookahead.

3. IMPLEMENTATION FOR XML
This section introduces a research prototype of the method

for automating a local, hierarchical and dense structure trans-
formation of documents. For transforming one document

we need to define a transformation specification by going
through the phases of the method. After the user has de-
fined the transformation once, the same specification can be
used to transform all documents with the source DTD to
follow the target DTD.
As an input, the system gets the source DTD for defining

the structure of the source document and the target DTD
for defining the structure of the target document. At first,
the system generates syntax trees from the two DTDs. An
internal representation form of the syntax trees in the system
is XML.

3.1 Tool for the label association
The user interface for defining a label association shows

the syntax trees of the source and the target DTDs in an
illustrative form for the user (Fig. 1). The user only defines
the matching between the elements which are in the leaves
of syntax trees and contain the text of the document. In this
paper, we call these elements terminating elements. When
we have a label association for the terminating elements,
the associations for the interior elements in a tree can be
generated automatically.

3.2 Tool for the node association
For each interior element of the DTD, the system pro-

duces the set of associated terminating elements, what the
element can derive. This information is needed in the trans-
formation method, because in two DTDs we consider ele-
ments, which derive the same terminating elements, to have
the same semantic meaning and associate them. Using sets
of associated terminating elements, the system can generate
the label association of the interior nonterminals automati-
cally.
From the complete label association, the system automat-

ically produces a node association between the derivation
trees of DTDs and generates the substructure pairs. From
the structures in Fig. 1, the system generates a substructure
pair

<rule>
<input>

<article>
<title type=’string’/>
<author repeat=’*’ type=’string’ minOccurs=’0’

maxOccurs=’unbounded’/>
<date type=’string’/>
<content>

<abstract type=’string’/>
<section repeat=’+’ minOccurs=’1’

maxOccurs=’unbounded’/>
</content>

</article>
</input>
<output>

<article assoc=’article’>
<writer repeat=’*’ type=’string’ minOccurs=’0’

maxOccurs=’unbounded’ assoc=’author’/>
<title type=’string’ assoc=’title’/>
<intro>

<abstract type=’string’ assoc=’abstract’/>
<keywords type=’string’/>

</intro>
<body>

<section repeat=’+’ minOccurs=’1’
maxOccurs=’unbounded’ assoc=’section’/>

</body>
</article>

</output>
</rule>

The target DTD may generate several possible target sub-
structures. The system uses a heuristic function to restrict

27

Figure 1: Association of elements author and writer in a label association

the number of possible translations and to give priorities
for the alternative translations. More detailed description
about heuristic function can be found in [7]. The user makes
the final selection of the matching target substructure. As
an output, this phase will produce a transformation specifi-
cation.

3.3 Generation of the XSLT script
From the transformation specification, the system gener-

ates an XSLT script automatically. For each rule in the
automatically generated XML rule file, one template will be
created. The root node of the input part of the rule will be
the node where the template will be matched in the source
document. The contents of the output element of the rule
defines the contents of the XSLT template.
For the automatically generated example rule above, the

system will generate the following template.

<xsl:template match=’article’>
<article>

<xsl:for-each select=’./descendant::author’>
<xsl:apply-templates select=’.’/>

</xsl:for-each>
<xsl:apply-templates select=’./descendant::title’/>
<intro>

<xsl:apply-templates select=’./descendant::abstract’/>
<keywords></keywords>

</intro>
<body>

<xsl:for-each select=’./descendant::section’>
<xsl:apply-templates select=’.’/>

</xsl:for-each>
</body>

</article>
</xsl:template>

Because the system matches the interior elements of the
derivation trees, the templates are small when the struc-
tures of the documents are near each other. Templates are
generated in a recursive manner. From these reasons, the
automatically generated XSLT script is easy to understand
and tailor by an expert user if needed.

4. CONCLUSIONS
We have introduced a prototype which automates the def-

inition of the document structure transformation. The aim
has been to find how far it is possible to automate transfor-
mations and develop a method for generating a transforma-
tion specification as automatically as possible. The user of
the system still needs to have some knowledge about docu-
ment structures to define a transformation.

5. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman. Compilers

Principles, Techniques, and Tools. Addison-Wesley
Publishing Company, 1986.

[2] A. Berlea and H. Seidl. Transforming XML documents
using fxt. Computing and Information Technology,
Special Issue on Domain-Specific Languages, 2002.

[3] P. Cimprich, O. Becker, C. Nentwich, H. Jiroušek,
M. Kay, P. Brown, M. Batsis, T. Kaiser, P. Hlavnička,
N. Matsakis, C. Dolph, and N. Wiechmann. Streaming
transformations for xml (stx) Version 1.0.
http://stx.sourceforge.net/documents/, Working
Draft 5 May 2003.

[4] F. Gécseg and M. Steinby. Tree Automata. Académiai
Kiadó, Budapest, 1984.

[5] Induslogic. XSLWiz, 2001.
http://www.induslogic.com/products/xslwiz.html.

[6] S. Krishnamurthi, K. Gray, and P. Graunke.
Transformation-by-example for XML. In E. Pontelli
and V. Santos Costa, editors, Proceedings of the
Second International Workshop on Practical Aspects
of Declarative Languages (PADL’00), Lecture Notes in
Computer Science, Vol. 1753, pages 249–262,
Springer-Verlag, Boston, MA, USA, 2000.

[7] E. Kuikka, P. Leinonen, and M. Penttonen. Towards
automating of document structure transformations. In
R. Furuta, J. I. Maletic, and E. Munson, editors,
Proceedings of the 2002 ACM Symposium on
Document Engineering, pages 103–110, McLean,
Virginia, USA, 2002.

[8] E. Pietriga, J.-Y. Vion-Dury, and V. Quint. Vxt: a
visual approach to xml transformations. In
E. Munson, editor, Proceedings of the ACM
Symposium on Document Engineering 2001 (DocEng
’01), pages 1–10, Atlanta, 2001.

[9] X. Tang and F. Tompa. Specifying transformations for
structured documents. In Proceedings of 4th
International Workshop on the Web and Databases
(WebDB’2001), pages 67–72, 2001.

[10] W3C. XSL Transformations XSLT Version 1.0, W3C
Recommendation, November 16, 1999. Available at
http://www.w3.org/TR/xslt.

[11] W3C. Extensible Markup Language (XML) 1.0
(Second Edition), W3C Recommendation, October 6,
2000. Available at http://www.w3.org/TR/REC-xml.

28

