
Towards a Semantics for XML Markup

Allen Renear and David Dubin
Graduate School of Library and

Information Science
University of Illinois at

Urbana-Champaign

{renear, ddubin}@uiuc.edu

C. M. Sperberg-McQueen
World Wide Web Consortium
MIT Laboratory for Computer

Science

cmsmcq@acm.org

Claus Huitfeldt
Department for Culture, Language,

and Information Technology
Bergen University Research

Foundation

Claus.Huitfeldt@hit.uib.no

ABSTRACT
Although XML Document Type Definitions provide a mechanism
for specifying, in machine-readable form, the syntax of an XML
markup language, there is no comparable mechanism for specify-
ing the semanticsof an XML vocabulary. That is, there is no way
to characterize the meaning of XML markup so that the facts and
relationships represented by the occurrence of XML constructs can
be explicitly, comprehensively, and mechanically identified. This
has serious practical and theoretical consequences. On the posi-
tive side, XML constructs can be assigned arbitrary semantics and
used in application areas not foreseen by the original designers. On
the less positive side, both content developers and application engi-
neers must rely upon prose documentation, or, worse, conjectures
about the intention of the markup language designer — a process
that is time-consuming, error-prone, incomplete, and unverifiable,
even when the language designer properly documents the language.
In addition, the lack of a substantial body of research in markup se-
mantics means that digital document processing is undertheorized
as an engineering application area. Although there are some re-
lated projects underway (XML Schema, RDF, the Semantic Web)
which provide relevant results, none of these projects directly and
comprehensively address the core problems of XML markup se-
mantics. This paper (i) summarizes the history of the concept of
markup meaning, (ii) characterizes the specific problems that moti-
vate the need for a formal semantics for XML and (iii) describes an
ongoing research project — the BECHAMEL Markup Semantics
Project — that is attempting to develop such a semantics.

Categories and Subject Descriptors
I.7.2 [Document Preparation]: Document and Text Processing—
Markup languages

General Terms
Theory, Standardization

Keywords
SGML, XML, Markup, Semantics, Knowledge Representation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’02,November 8–9, 2002, McLean, Virginia USA.
Copyright 2002 ACM 1-58113-594-7/02/0011 ...$5.00.

1. INTRODUCTION
As a consequence of recent rapid advances in digital publish-

ing, the explosion of WWW based applications, and the grow-
ing interest in electronic commerce, many aspects of our daily so-
cial, commercial, and cultural lives now involve systems based on
SGML/XML document markup. SGML/XML provides a rigor-
ous machine-readable technique for defining descriptive markup
languages — languages which explicitly identify the underlying
meaningful structure of document, apart from the intended pro-
cessing. The expectation motivating the SGML/XML approach
was that the widespread use of such a specification would support
high-function interoperable document processing and publishing
systems.

This expectation has been partly fulfilled, and the superiority of
the SGML/XML approach over earlier strategies confirmed, but
there remain continued opportunities to improve the functionality,
interoperability, heterogeneity, and accessibility of SGML/XML-
based document processing. The practical consequences of a fail-
ure to seize these opportunities are serious: on an industry-wide
scale they have considerable financial costs and lost opportunities,
in safety-critical applications they can result in disaster, and in their
impact on the perceptually disabled they can prevent equitable ac-
cess to the cultural and commercial benefits of contemporary so-
ciety. Moreover, the continuing existence of these problems re-
minds us that our best models of digital document processing re-
main flawed, or at least underdeveloped.

The source of these problems is that even though SGML/XML
is thought of as providing access to a document’s meaningful struc-
ture, current SGML/XML methods cannot represent the fundamen-
tal semantic relationships amongst document components and fea-
tures in a systematic machine-processable way. SGML/XML sup-
ports the specification of a machine readable “grammar”, but be-
cause it has no mechanism for providing a semantics for that gram-
mar what an SGML/XML vocabulary meansstill cannot be for-
mally specified. Even very simple fundamental semantic facts about
a document markup system — facts that are routinely intended
by markup language designers, and relied on by markup language
users and software — are inexpressible in current SGML/XML
document formalisms.

The result is that SGML/XML markup language users must guess
at the semantic relationships the markup language designer had in
mind, but had no way to formally express. Content developers must
conjecture what they believe to be in the mind of the markup lan-
guage designer, and rely on these inferred relationships in encoding
their content — and then these content developers in turn have no
way to formally represent their inferences and intentions to each
other, or to the software applications that process the encoded con-
tent. Software designers must also make their own guesses about

119

the likely intentions of markup language designers and then reflect
these in the design of software tools and applications. Sometimes in
fact a second-order conjecture is necessary: when software design-
ers must also guess at what content encoders inferred about what
markup language designers meant!

Obviously these conjectures will be incomplete, error-prone and
unverifiable, as well as time-consuming both to make and to imple-
ment, resulting in high costs and low levels of functionality and
interoperability. The natural-language prose documentation that
accompanies an SGML/XML specification is not a wholly satisfac-
tory solution to this problem. Prose documentation does of course
provide some assistance to both content providers and software en-
gineers, but there are no established common principles for devel-
oping SGML/XML documentation, and, in any case, prose docu-
mentation is not a machine-readable formalism— and that is what
is required to address current problems with SGML/XML markup
systems.

Although the absence in SGML and XML of any provision for a
machine-processable semantic description of the constructs being
defined has been noted by a number of researchers and identified
as the source of current engineering problems as well an obstacle
to future development, [25] [23] [43] [25] [36] the nature of the
needed semantics remains little studied. The W3C Schema effort
is relevant, but takes up only a small subset of these problems (e.g.
data types). The W3C’s “Semantic Web” activity is also relevant,
but its agenda is to develop XML-based techniques for knowledge
representation in general, while our project focuses on document
markup semantics, as latent in actually existing document process-
ing systems — one might say that the Semantic Web effort is de-
signing a semantic markupwhile the solution to the problems iden-
tified here requires a markup semantics.

In what follows we (i) present the issue of the meaning of markup
in historical context (where it plays a interesting role in the evolu-
tion of approaches to document processing), (ii) characterize the
specific problems that motivate the perceived need for a formal se-
mantics for markup — and which determine the requirements for a
satisfactory semantics); and (iii) briefly describe an ongoing multi-
institutional research project — the BECHAMEL Markup Seman-
tics Project — that is attempting to develop such a semantics.

2. HISTORICAL CONTEXT
Document “markup” might arguably be considered part of any

communication system, including early writing, scribal publishing,
and printing, but with the emergence of digital text processing and
typesetting the use of markup became self-conscious and explicit
and an important area of innovation in systems development [4]
[40]. The 1960s, 70s, and 80s in particular saw extensive system-
atic development of document markup systems, typically focused
on improving the efficiency and functionality of digital typesetting
and text processing [12] [22] [19] [10] [26] [17] [18]. By the early
1980s there were also efforts to develop a theoretical framework
for markup and to use that framework to support the development
of high-function systems. Some of this work was published in the
scientific literature [11] [27] [4] [40], but much of it was recorded
only in the working documents and products of various standards
bodies.

One of the key ideas that emerged during this period was the
notion that documents, at least qua intellectual objects, were best
modeled as ordered hierarchical structures of objects such as chap-
ters, paragraphs, equations and the like, and not as, for instance,
one-dimensional streams of text characters with interspersed for-
matting codes; structures of design objects (pages, columns, ty-
pographical lines); matrices of pixel values; or any of the other

representational strategies implicit in many existing document pro-
cessing and storage systems [5]. This model generalized an already
existing natural distinction between markup that identified editorial
text objects (titles, chapters, etc.) and markup that specified format-
ting instructions. Use of the former allowed a level of indirection
that provided many advantages. [11] [27] [4] Document elements
such as titles, chapters, sections, paragraphs, equations, quotations,
and the like would be explicitly identified by delimited markup, and
then processing would be indirectly applied via rules that mapped
procedures to types of elements. This separation of processing and
content, implementing a basic level of indirection and abstraction
with the usual combinatoric economies, was not only of immense
and varied practical value in all aspects of document processing
[4] but moreover seemed to reflect a correct engineering model of
what a document “really is” [5]. The descriptive markup used to
implement this approach did not just mark element boundaries, but
carried the meaning (e.g. this text is a chapter) needed to realize
the specific underlying document model.

The influential SGML document markup meta-grammar emerged
from the ANSI/ISO effort in the early 1980s and reflected the pre-
ceding theoretical and analytical work on markup and document
structure. SGML provides a machine-readable formalism for defin-
ing descriptive markup languages. As a metagrammar SGML does
not define a markup language, but rather specifies the techniques
for developing a machine readable definition of a markup language.
The central mechanism for that definition is a BNF-like formalism
with additional rules for specifying typed attribute/value pairs and
some other devices for further abstraction and indirection. (See
[30] for warnings about the degree of similarity between DTDs and
BNF, however.) Structurally an SGML document instance is a tree
with ordered branches and labeled and annotated nodes and it is a
formal production of its corresponding DTD.

The fundamental ideas behind SGML, based on years of both
analysis and practical experience, were compelling. And in addi-
tion the specific mechanisms of SGML (the BNF-like metagram-
mar, typed attribute/value pairs, entity references, etc.) promised
a high-function implementation in applications and tools, with the
benefits of industry-wide standardization at the meta-grammar level,
and local innovation at the level of vocabulary. The SGML markup
language development process itself also seemed to both support
and refine natural and ideal workflows for document systems de-
sign, implementation, and use. In the mid 1980s to early 1990s a
number of SGML-based markup systems were developed[1] [42]
[39].

Despite the care taken in the development of SGML, the sound
and field-proven nature of its ideas, and the success of at least sev-
eral implementations, there was disappointingly little adoption and
success in the first decade. Although a number of circumstances
contributed to this, the principal reason was the complexity of the
standard itself, including the fact that SGML incorporated many
complicated optional features that conforming software might, but
need not, implement. SGML software development consequently
proceeded very slowly. One further result of these accommoda-
tions and confusions was that even a non-validating parse of a doc-
ument was not possible without processing the DTD — abbrevi-
ation options meant that element boundaries could not be reliably
determined without reference to the document grammar. In addi-
tion, SGML includes several other features that resulted in a formal
grammar unsuited for use with existing parser development tools
and for which it is difficult to write efficient parsing routines.

The eventual widespread use of SGML systems in networked
publishing and communication was a result of HTML (the Hyper-
text Markup Language). The initial versions were loosely defined

120

and lacked any formal specification of syntax; and when interest
in an SGML DTD for HTML later developed, it proved difficult
to design a DTD after the fact that would accommodate already
established “correct” practice. More importantly the key distinc-
tion between descriptive and procedural markup was ignored by
developers and users alike, as HTML vendors casually added ob-
viously procedural markup (e.g. <center>) to the predominantly
descriptive markup (e.g. <title>) of the original HTML specifica-
tion. Even the descriptive parts of HTML did little to reflect the
document hierarchy, and the specification provided no stylesheet
language to support indirection. Finally there was also no use of
SGML mechanisms for extending an element set or using alterna-
tive element sets, and, indeed, the assumption seemed to be that
HTML documents would be processed not by generic SGML pro-
cessors (which would allow extensions or alternative DTDs) but
by HTML-specific formatters that processed only HTML elements,
and only with the formatting rules hard-coded in the processor.

Much of the subsequent evolution of HTML can be seen as an
effort to evolve the casually developed original HTML language to
the sort of SGML language that would have been designed if there
had been time and resources to apply established principles of doc-
ument system design. At the same time, there was pressure on the
newly formed W3C to allow for new element sets, and to provide
for the use of SGML on the Web. It was soon recognized that the
flaws in SGML were an obstacle to this project — and, more gener-
ally, to realizing the advantages of SGML and descriptive markup
on the Web. These problems included the number of optional fea-
tures in SGML, the complexity of its formal grammar, and the need
to refer to a DTD to determine element boundaries.

In order to ensure that HTML and other related technologies
could more easily benefit from advantages of a metagrammar, that
users could easily develop and share new domain-specific elements,
that documents could be parsed into trees of elements without ref-
erence to a DTD, and that the logjam of SGML tool and application
development was broken, the W3C created a subset of SGML, in-
tended to provide a simpler standard (no options), a simpler gram-
mar, and support for the (non-validating) processing of documents
without reference to DTDs. This is the metagrammar XML, re-
leased as a W3C Recommendation in 1998, after a year and a half
of development.

Since 1998, there has been an explosion of new XML markup
languages, and that rapidly expanding growth continues today. This
explosion is the result of several factors:

1. the demand for new markup systems for special domains,
caused by the increasing use of network electronic publish-
ing in science, medicine, business, law, engineering, and in
specialized areas with these large domains.

2. the lowering of the cost and complexity of developing new
tools and applications, a result of the simplicity of parsing
XML compared to SGML

3. the use of XML markup to support the integration of other
sorts of processing and communication with publishing ap-
plications — or even to support the integration of application
unrelated to publishing.

There is thus reason to be optimistic. We finally have a power-
ful easily implementable technique for creating high-performance
markup languages, digital documents, and document processing
and publishing systems that can be integrated with other informa-
tion management applications. In particular, the prospect of finally
having a deep processable purchase on the underlying meaningof

document structure promises extraordinary new functionality, re-
leasing for automated processing information that had up until now
been inaccessible, at least without impractical amounts of human
intervention.

3. THE PROBLEM
Unfortunately recent experience and reflection has made it clear

that our understanding of how descriptive markup conveys mean-
ing, and our techniques for supporting the expression and process-
ing of that meaning, are inadequate to realize fully its promise.

The systematizing and theorizing of document markup that took
place throughout the 1980s focused on three things:

1. the conceptualization of a general document model [5]

2. the development of techniques for the formal specification,
vocabulary and syntax, of document markup languages that
could define specific classes of documents and represent ac-
tual documents as instances of that model [14]

3. the development of those markup languages (e.g. CALS,
AAP, TEI, HTML, etc.)

It seemed that identifying and annotating the logical parts of a doc-
ument using a descriptive markup language explicitly delivered the
“meaning” that had been only implicit, at best, in the procedural
markup, making that meaning unambiguous, explicit, and available
for mechanical processing.

Many people refer to XML documents as “self-describing data”.
Although there were a few early voices of dissent (see Mamrak [20]
and most importantly Raymond and Tompa [24]), as the initial pe-
riod of descriptive markup enthusiasm drew to a close it appeared
that most document researchers felt that there was no need for a
more expressive representation. A well-defined SGML markup
language delivered the meaning latent in document structure, mak-
ing it fully, and efficiently, available to processing. In a breathless
sentence co-authored by one of the authors of this article (and later
selected for leading quotation in an issue of TUGBoat, the TeX
Users Group journal), “In the end, it should be clear that descrip-
tive markup is not just the best approach of the competing markup
systems; it is the best imaginable approach.” [4].

The experience of the 1990s has shown that this confidence was
not entirely warranted. Although our situation is today certainly
much improved from a practical point of view, a pattern of repeated
failures of interoperation and functionality have made it evident
that SGML/XML still does not really succeed in providing, in an
explicit machine-processable way, the meaning latent in document
structure — this meaning still must be, as before, indirectly in-
ferred. The rigor of the element and attributes in an SGML/XML
DTD is not matched by a similar rigor in the rest of the document
type definition, the part not formalized. The grounds of the needed
inference are different to be sure, and no doubt improved, but our
situation is qualitatively not as dissimilar to pre-SGML document
processing as one might think — the key determinations of mean-
ingful structure are still made by human beings reflecting on rela-
tively implicit and ambiguous cues.

Reflection on the nature of the DTD shows why this is so: a
DTD presents only a vocabulary and a syntaxfor that vocabulary
— it does not provide a semanticsfor the vocabulary. Which of
the ordinary meanings of “title” is meant by “<title>”, or even
whether “<title>” means anything like what we ordinary mean by
“title”, is undetermined by the DTD — the DTD only specifies that
there is a certain element that has as its label the character string
“title”, and that it may be used in certain combinations with other

121

elements — those other elements being similarly defined. So what
<title> meansis often simply inferred — both by content devel-
opers using the markup language to represent a document, and by
software developers designing software, from the natural-language
associations of its name (“title”) in a natural language and its use in
context. The meaning of “<title>”, presumably originally in the
head of the language designer, is nowhere expressed in a systematic
rigorous way.

Of course this overstates the situation. The meanings of markup
constructs may of course be expressed, in a sense, in the natural-
language prose documentation that is sometimes provided by the
developers of the markup language. But this clearly does not fully
solve the problem, even for DTDs documented according to the
best industrial and academic practices.

For software to reflect a semantic relationship present in a markup
language, that language’s designer must indicate the relationship in
the documentation; the software engineer must then (seek, find,
open, and) study the markup language documentation, and design
the application to take advantage of those features. Neither of these
two steps is machine verifiable, and neither happens with as much
reliability as could be wished. The need for manual interventions
is an obstacle to the development of high-performance networked
document processing and publishing systems. What is needed is a
mechanism that would allow the markup language designer to rig-
orously and formally specify semantic relationships; these specifi-
cations could then be read by processing applications which would
configure themselves accordingly, without case by case human in-
tervention.

Let’s take a look at some specific examples. These are relation-
ships that are all of at least potential practical importance, but which
cannot be easily and systematically exploited as there are no stan-
dard machine-processable formalisms for representing them. Many
in fact are sufficiently important that software designers are pro-
ceeding, in an ad hoc way, to infer their existence from prose doc-
umentation and build idiosyncratic systems that make use of them.

Class Relationships SGML/XML contains no general constructs
for expressing class hierarchies or class membership among
elements, attributes, or attribute values — one of the most
fundamental and practical relationships in the most impor-
tant constructs in contemporary software engineering. There
is no way to say, e.g., that a paragraph is a prose-structural
element (the isa relationship), or that all prose-structural ele-
ments are editorial elements (the ako relationship). Two na-
tive SGML/XML constructs are sometimes used to achieve
rudimentary classing along these lines — attribute/value pairs
(particularly as used with “type” and “class” attributes) and
parameter entity references. These techniques are expres-
sively weak and, perhaps because they re-purpose mecha-
nisms designed with other uses in mind, SGML and XML
provide no good mechanisms for controlling them or for con-
straining their use, although their use in practice does indeed
reveal that many document type designers do work with class
hierarchies. XML Schema does provide for the explicit dec-
laration of class relations but does not itself specify what the
derivation of complex types from other complex types means
on the semantic level.

Propagation In many markup languages (e.g. TEI and HTML as
of version 4.0), certain properties are to be propagated to
all contained elements, or in some cases to textual content.
For instance, if an element has the attribute/value notation
“lang="de"”, indicating that the text is in German, then
it is implied (absent defeat, see below) that all of its child

elements have the property of being in German. But DTDs
provide no formal notation for specifying which attributes
are thus propagated. Moreover, it is also assumed that such
propagation is not monotonic but can sometimes be defeated
by an explicit reassignment of the attribute value on a con-
tained element. And there seems to be a variety of different
sorts of propagation, some involving properties associated
with elements as well as properties associated with attributes,
and some having textual content as well as element content
as a target. For instance, if the markup indicates that a sen-
tence is in German, that implies that all of the word in that
sentence are (unless the attribution is defeated) in German,
and similarly all the words in a phrase marked as deleted are
deleted, and all the words of a phrase marked as emphasized
are emphasized — but it is not the case that marking a com-
ponent as a paragraph implies that all of its contained words
(or elements) are themselves paragraphs. One cannot specify
in a DTD which properties propagate, and what the logic of
that propagation (including rules for defeat) is, and yet such
relationships are regularly inferred (correctly or incorrectly)
by software designers developing software for a particular
markup language, and then implemented in their tools and
applications. [36]).

Context and reference In many markup languages an element, e.g.
“<title>”, may be used with different meanings, as inferred
by context, though with a sufficiently invariant core mean-
ing to justify the use of the same element type. For in-
stance, the use of “<title>” to mark text as a title, but relying
on the structural location of “<title>” to indicate its refer-
ent. So “<title>” within “<head>” means title of the object
“<document>”, and “<title>” within “<chapter>” means
title of the enclosing “<chapter>”. There is no mechanism
for saying what the title is a title of, that in some cases it is
the title of its immediate parent, and in others the title of the
root element. A further complication is when a bibliographic
entry contains a “<title>” element; here the title in question
is the title of a entity external to the text. Again, such rela-
tionships cannot be expressed in the DTD, but are inferred
by software designers, essential for high-function automated
processing of the text. (Only a part of this problem would
be solved if different generic identifiers were used for each
sense, for it would still be necessary to articulate the dyadic
nature of the property expressed, and supply a resolvable de-
ictic expression in order to locate the objects the property
applies to.)[36])

Ontological variation in reference A similar but more radical sort
of ambiguity occurs when properties are assigned using forms
that suggest identical referents, but that require careful inter-
pretation to ensure this identity. For instance, attributes may
indicate that a particular element instance is-a-theorem, is-
in-German, and is-illegible. But can a straightforward inter-
pretation of these predicates, which would have them all re-
ferring to the same thing (the element instance), really be ro-
bust enough for knowledge representation purposes? Rather
it would seem that the abstract sentences are in German, the
propositions they express are theorems, and their rendered
concrete expressions are illegible — and that strictly speak-
ing there is no single object has all of these properties.

Full and partial synonymy Full and partial synonymy within and
across markup languages is an extremely important seman-
tic relationship, and the lack of mechanisms to characterize

122

it create serious problems with heterogeneity. And while full
synonymy may be eliminable within a single markup lan-
guage, both full and partial synonymy are difficult and im-
portant relations acrossmarkup languages, particularly now
as the number of markup languages rapidly increases. But
we currently have no suitable formal machine-processable
way to document synonymy of elements, attributes, and at-
tribute values in different languages; architectural forms (see
below) can capture many cases of full synonymy, but par-
tial synonymy is more difficult to document, as well as much
more common in practice. Partial synonymies of the sort rep-
resented by class inclusion relationships could also go a long
way to resolving problems of heterogeneity.

4. THE BECHAMEL PROJECT
The BECHAMEL Markup Semantics Project grew out of re-

search initiated by Sperberg-McQueen (W3C/MIT) in the late 1990s
[36] and is a partnership with the research staff and faculty at the
Department for Culture, Language and Information Technology,
Bergen University Research Foundation, and the Graduate School
of Library and Information Science Electronic Publishing Research
Group at the University of Illinois, Urbana-Champaign. [28] The
name of the project is an acronym formed from the names of the
cities where the cooperating investigators are located (Bergen, Nor-
way; Champaign, Illinois; Española, New Mexico).

The Project now has the following research goals:

1. Characterizing the representation and inference issues ger-
mane to document markup semantics, and developing a tax-
onomy and description of the problems any semantics-aware
document processing system must solve or address.

2. Surveying properties and semantic relationships common to
popular markup languages and evaluating the applicability
of standard knowledge representation technologies — such
as semantic networks, frames, logics, formal grammars, and
production rules — with respect to their expressive adequacy,
elegance, parsimony, and computational efficiency for mod-
eling these relationships and properties [41] [31].

3. Developing and testing a formal, machine-readable represen-
tation scheme in which the semantics of a markup language
can be expressed.

4. Exploring applications of the semantics representation, such
as transcoding support, information retrieval, accessibility
improvement, etc. Our current focus is on the support of
semantic inferences from databases of document instances
as we believe that this will best stress the general decisions
about choice of representation techniques.

5. Conducting, in partnership with digital library content en-
coding projects from the humanities computing community,
and associated software tool developers, large scale tests of
the resulting semantics representation scheme.

Our early Prolog testbed[36] has been extensively developed into
a prototype knowledge representation workbench for representing
facts and rules of inference about structured documents[6] [38].
The system permits an analyst to specify facts about the markup
syntax (e.g., generic identifiers and attribute values) separately from
facts and rules of inference about semantic entities and properties.
The system provides a level of abstraction at which the meaning of
the markup can be explicitly represented in machine-readable and

TXT CIT TXT

P

HE

Figure 1: The Syntactic View of Markup

executable form. Inferences can then be drawn regarding document
components, including problematic structures, such as those partic-
ipating in overlapping hierarchies. We have developed a collection
of predicates that emulate a subset of the W3C’s Document Object
Model methods for navigating the hierarchical structure of nodes,
and retrieving attribute values and information from the document
type definition. These afford a clear separation of the syntactic
information captured by the parser and the document semantics ex-
pressed by the analyst.

Preliminary findings, reported earlier, revealed the complexity of
identifying all licensed inferences [36] [29] and the additional com-
plicating presence of non-assertive illocutionary force [28]. The
rudimentary inferencing system demonstrated that automated rea-
soning about markup was possible, and that complexities such as
non-monotonicity and contextual ambiguity could be handled with
Prolog rules [37]. Further work is reported in [38] [35].

5. MODELING MARKUP SEMANTICS
The semantics of document markup are the abstract structures,

properties and relationships understood by a user of a markup lan-
guage, as cued by markup and its syntax. Markup semantics are
modeled computationally by applying knowledge representation
technologies to the problem of making those structures, relation-
ships, and properties explicit.

Consider the following fragment of an XML-tagged document:

<P><HE>The Translation Problem</HE>
Translation between different
SGML/XML applications, or
reconciliation of incompatible
document classes is a well-known
challenge <CIT>Fausey and Shafer
(1997)</CIT>. A variety of
techniques are used... </P>

It’s natural for a reader familiar with structured markup to infer
that the document element marked with the P tag is a paragraph,
that the paragraph has a heading, and that the contents of the para-
graph consist of the text that starts after the heading element, and
ends at the close paragraph tag. Inasmuch as the meaning or use
of a tag may not be immediately obvious, the author/reader can
consult prose tag set documentation.

However obvious inferences may be to a human reader, they can-
not be drawn from the data structure emerging from a syntactic
parse of the fragment. As shown in figure 1, the parse tree (avail-
able to, e.g., a stylesheet programmer) represents the heading, ci-
tation, and the text before and after the citation each as a separate
child node of the paragraph. Nothing in the parse tree represents
that fact that that the heading is a feature of the paragraph as a
whole, or that the text nodes are two parts of the same content struc-
ture, or that the citation is considered embedded in the text.

123

TXT CIT TXT

P

HE

Paragraph

Text

Citation

Heading

has-a contains

contains

Figure 2: A syntax tree enriched with semantic representation

In fact, the data structure per se doesn’t have, or say anything
about, paragraphs and citations at all. The data structure is only a
graph of nodes with associated information, such as a generic iden-
tifier having the value “paragraph”. The programmer is, of course,
expected to draw inferences consistent with the documented mean-
ing and use of the tags, and to use that knowledge, for instance,
in constructing the transformation of the tree from one form to an-
other. But that transformation (expressed, for example, in XSLT,
DSSSL or a procedural language like C++), relies on the semantic
inferences without explicitly encoding them.

Figure 2 suggests how the syntactic tree could be enriched or
enhanced using semantic knowledge. The whole-part and contain-
ment relationships are encoded at a higher level using a knowl-
edge representation technology. The diagram suggests a traditional
semantic net representation, but any of a number of alternatives
might be employed, including a frame, rule, formal grammar or
logic-based representation [31] [41]. Advances in Semantic Web
projects (section 8) may even provide suitable expressive power in
markup languages themselves. The point is to have a level at which
to represent abstractions, relationships, and constraints that can-
not be modeled or enforced by a conventional XML/SGML parser.
The knowledge is encoded in a machine-readable file which (like
a DTD or syntactic schema) can be used to validate a document
against semantic constraints and provide a richer document model
to an application programmer. These more expressive representa-
tions can support the design and implementation of better document
processing systems.

6. TARGET APPLICATIONS
Many new technologies have been developed in recent years to

augment the usefulness of conventional structured markup. Among
the information management problems they aim to address are the
following:

Translation and Federation One of the most common projects
for an SGML/XML developer is to design a transformation
from one application syntax into another [21]. Typically, this
is with the aim of creating a new presentation of the docu-
ment, or preparing it for storage in a database. Sometimes,
however, a developer faces the task of federating or recon-
ciling a large collection of digital documents, each tagged
according to one of a number of non-interoperable markup
languages [3] [32]. Whatever the scope of the translation

problem, the conventional solution usually involves applying
a transformational programming language that acts directly
on the syntactic parse tree [8]. The tree emerging from the
parse of the source document is transformed into a tree rep-
resenting a valid instance of the target language. The trans-
formed tree is then serialized into a new document instance,
graphical or audio presentation.

Information Islands This challenge is similar to the translation
problem. However, rather than transforming one or more
documents from one into another, the goal is to permit doc-
uments stored in different parts of a distributed information
system to present a common transparent interface to the sys-
tem’s users [9] [13]. It’s not necessary to literally transform
the documents from one markup language to another, but the
system must provide apparently seamless integration of the
document contents, notwithstanding any differences in the
way the documents are encoded.

Accessibility The growing acceptance of structured markup in au-
thoring tools has been greeted as a boon for promoting the
accessibility of digital documents for visually disabled users.
Declarative markup allows a person reading a document with
the aid of a screen reader or braille display to draw inferences
on the basis of mnemonic tag names, rather than graphical
formatting cues. But currently the success of such applica-
tions depends on the ability of the user and/or interface soft-
ware to deduce every important structural inference on the
basis of the tag names and syntax alone. It also relies on
document authors’ fidelity in adhering, not only to markup
syntax constraints, but also strictly to the meaning and use
of the tags, as described in tag set documentation. Regret-
tably, authors often misuse tags for the purpose of exploiting
known presentation side effects; the most notorious exam-
ples of this problem are the use of heading markup on web
pages for particular kinds of typographic emphasis.

Secure Transactions Part of the impetus driving the development
of more expressive markup schema languages (such as the
W3C XML Schema language) is the recognition that con-
sequences of tagging errors, misinterpretation, or fraud can
be far more drastic than poorly formatted output. Declara-
tive markup is used not only in electronic commerce, but in
safety-critical information domains such as medical records
[33] and the aircraft industry [7]. Developers in these do-
mains have to ensure not only that digital documents are
syntactically well-formed, but that their applications support
protocols for ensuring accurate transcription, storage, trans-
mission, and presentation of document contents.

7. BENEFITS OF MARKUP SEMANTICS
Encoded markup semantics, as investigated in the current project,

promises contributions to addressing the aforementioned challenges
in the following ways:

Declarative, Machine-Readable Semantic Descriptions As it cur-
rently stands, the designers of structured markup languages
express the meaning and appropriate use of their tags in natural-
language text. Formal markup semantics will accord forms
in which these relationships can be unambiguously expressed
and automatically processed by a computer program.

Validation of Hypotheses In situations where no formal written
tag set documentation exists, a system capable of processing

124

markup semantics declarations can act as an interactive en-
vironment for testing conjectures and validating hypotheses.
In such situations, the user of an undocumented markup lan-
guage conjectures a property or rule that he or she believes to
be consistently applied in a database of document instances.
The document processing software can then retrieve all doc-
ument elements that are consistent or inconsistent with the
hypothesized rule.

Enforcement of Semantic Constraints Just as a semantics-aware
parser can test conjectures in a process of discovering or hy-
pothesizing a language’s semantics, such a parser can en-
force semantic constraints, in addition to the syntactic valida-
tion accomplished by a conventional parser. The operation is
identical to that of hypothesis validation, but in this situation,
the semantic constraints are known and normative.

Richer, More Expressive APIs SGML and XML application pro-
grammers employ markup semantics on a daily basis in con-
structing transformations and presentations of digital docu-
ments. But the higher level properties and relationships are
only manifest in the execution of the software that they write.
Formalized, machine-readable semantics will enrich applica-
tion programming interfaces, and foster the design of soft-
ware that is easier and safer to maintain as the markup lan-
guages they process evolve and change.

8. RELATED WORK
A number of other document processing technologies, standards,

and research projects have responded to the challenges and prob-
lems described above. In the following paragraphs we situate the
current proposal with respect to these efforts.

The Semantic Web [2] The Semantic Web refers to a number of
interrelated research and standardization efforts which, like
the current proposal, lie at the intersection of markup tech-
nologies and knowledge representation. The most central of
these enterprises is the World Wide Web Consortium’s Re-
source Description Framework, but other projects are often
included, such as the ISO Topic Maps standard [16]. The Se-
mantic Web is a very broad, ambitious effort aiming to equip
markup languages with the functionality of general-purpose
knowledge representation technologies, and thereby “assist
the evolution of human knowledge as a whole” [2]. Semantic
Web research and standardization efforts are unlike the cur-
rent proposal in that they aim not for a semantic description
of any particular domain, but for the capability of markup to
encode semantic knowledge about every domain. The cur-
rent proposal specifically targets the domain of “document
markup semantics,” not “general semantic markup.” But ad-
vances in Semantic Web technologies may make it possible
for us to encode our markup semantics in a Semantic Web
markup language.

W3C Document Object Model The Document Object Model is
an application programming interface to the hierarchical data
structure that results from parsing an XML document. We
aim to design systems that will provide interfaces to markup
semantics that are analogous to what the DOM provides with
respect to markup syntax, in effect a “semantic DOM” to
complement the W3C syntactic DOM.

W3C Schema XML Schema is an XML-based language that pro-
vides an alternative to traditional DTDs for expressing con-
straints on XML documents. The limitations of DTDs that

motivated the design of this language overlap with the prob-
lems and challenges that our project responds to. Schema
allows a document class designer to define elements that re-
spect complex data types, such as are defined in a high-level
programming language. However, encoding the full range of
relationships and constraints found in prose tag set documen-
tation will require more expressive power than XML Schema
currently provides.

HyTime Architectural Forms The enabling architecture technol-
ogy emerged from a recognition that different markup lan-
guage applications often encode structures that are semanti-
cally equivalent, though expressed in very different syntax
[15]. Architectural forms allow document class designers to
create mappings from their own specific element instances
to more general architectural instances that are easier to map
between diverse applications [34]. These mappings do rep-
resent a limited form of semantic knowledge, and can con-
tribute to solutions to some of the translation and federation
challenges described earlier. Our project proposes to model
a somewhat broader range of semantic relationships than ar-
chitectural forms can express.

9. REFERENCES

[1] AAP. Author’s Guide to Electronic Manuscript Preparation
and Markup. Electronic Manuscript Series. Association of
American Publishers, Washington, DC, 1986. Current
version: ANSI/NISO/ISO 12083 - 1995 Electronic
Manuscript Preparation and Markup, National Information
Standards Organization, 1995.

[2] BERNERS-LEE, T., HENDLER, J., AND LASSILA, O. The
semantic web. Scientific American 284, 5 (May 2001),
35–43.

[3] COLE, T., AND KAZMER, M. SGML as a component of the
digital library. Library High Tech 13, 4 (1995), 75–90.

[4] COOMBS, J. H., RENEAR, A. H., AND DEROSE, S. J.
Markup systems and the future of scholarly text processing.
Communications of the Association for Computing
Machinery 30, 11 (1987), 933–947.

[5] DEROSE, S. J., DURAND, D., MYLONAS, E., AND

RENEAR, A. H. What is text, really? Journal of Computing
in Higher Education 1, 2 (1990), 3–26.

[6] DUBIN, D., RENEAR, A., SPERBERG-MCQUEEN, C. M.,
AND HUITFELDT, C. A logic programming environment for
document semantics and inference. Presented at
ALLC/ACH, Tübingen, Germany, July 2002.

[7] ENSIGN, C. SGML: The Billion Dollar Secret. Prentice Hall,
Upper Saddle River, NJ, 1997, ch. 5: United Technologies
Sikorsky Aircraft Corporation.

[8] FAUSEY, J., AND SHAFER, K. All my data is in SGML.
Now what? Journal of the American Society for Information
Science 48, 7 (1997), 638–643.

[9] FAY, C. The document management alliance. Bulletin of the
American Society for Information Science 25, 1
(October/November 1998), 20–24.

[10] GOLDFARB, C. F. Document Composition Facility:
Generalized Markup Language (GML) Users Guide. IBM
General Products Division, 1978. SH20-9160-0.

[11] GOLDFARB, C. F. A generalized approach to document
markup. In Proceedings of the ACM SIGPLAN-SIGOA
Symposium on Text Manipulation (New York, 1981), ACM,
pp. 68–73.

125

[12] IBM CORP. Application Description, IBM System/360
Document Processing: System. White Plains, NY, 1967.
Form No. H20-0315.

[13] IDE, N. M., AND SPERBERG-MCQUEEN, C. M. Toward a
unified docuverse: Standardizing document markup and
access without procrustean bargains. In Proceedings of the
60th Annual Meeting of the American Society for
Information Science (Medford, NJ, 1997), C. Schwartz and
M. Rorvig, Eds., Information Today, Inc., pp. 347–360.

[14] ISO. ISO 8879-1986 (E). Information processing — Text and
Office Systems — Standard Generalized Markup Language
(SGML). International Organization for Standardization,
Geneva, 1986.

[15] ISO. ISO/IEC 10744:1997: Information processing –
Hypermedia/Time-based Structuring Language (HyTime),
second ed. International Organization for Standardization,
Geneva, May 1997, appendix A.3 Architectural Form
Definition Requirements.

[16] ISO. ISO/IEC 13250: 2000 Information technology – SGML
Applications – Topic Maps. International Organization for
Standardization, Geneva, 2000.

[17] KNUTH, D. E. TEX and Metafont: New Directions in
Typesetting. Digital Press, Bedford, MA, 1979.

[18] LAMPORT, L. LATEX – A document preparation system.
Addison-Wesley, Reading, MA, 1985.

[19] LESK, M. E. Typing Documents on UNIX and GCOS: The
-ms Macros for Troff, 1977.

[20] MAMRAK, S. A., BARNES, J., HONG, H., JOSEPH, C.,
KAELBLING, M., NICHOLAS, C., O’CONNELL, C., AND

SHARE, M. Descriptive markup – the best approach?
Communications of the Association for Computing
Machinery 31, 7 (1988), 810–811.

[21] MAMRAK, S. A., KAELBLING, M. J., NICHOLAS, C. K.,
AND SHARE, M. A software architecture for supporting the
exchange of electronic manuscripts. Communications of the
ACM 30, 5 (1987), 408–414.

[22] OSSANNA, J. F. NROFF/TROFF user’s manual. Tech.
Rep. 54, Bell Laboratories, Murray Hill, NJ, October 1976.

[23] RAMALHO, J. C., AND HENRIQUES, P. R. Beyond DTDs:
constraining data content. In Proceedings of SGML/XML
Europe 98 (Paris, May 1998), GCA.

[24] RAYMOND, D. R., AND TOMPA, F. W. Markup
reconsidered. Technical Report 356, Department of
Computer Science, The University of Western Ontario, 1993.
Presented at the First International Workshop on the
Principles of Document Processing, Washinton DC, October
21-23 1992; an earlier version was circulated privately as
”Markup Considered Harmful” in the late 1980s.

[25] RAYMOND, D. R., TOMPA, F. W., AND WOOD, D. From
data representation to data model: Meta-semantic issues in
the evolution of sgml. Computer Standards and Interfaces
18, 1 (January 1996), 25–36.

[26] REID, B. K. Scribe Introductory User’s Manual, first ed.
Carnegie-Mellon University, Computer Science Department,
Pittsburgh, PA, August 1978.

[27] REID, B. K. Scribe: A Document Specification Language
and its Compiler. PhD thesis, Carnegie-Mellon University,
Pittsburgh, PA, 1981. Also available as Technical Report
CMU-CS-81-100.

[28] RENEAR, A. The descriptive/procedural distinction is
flawed. Markup Languages: Theory and Practice 2, 4

(2000), 411–420.
[29] RENEAR, A. Raising the bar: Text encoding from a logical

point of view. CLIP 2001: Computers, Literature, Philology,
Gerhard-Mercator University, Duisburg, Germany,
December 2001.

[30] RIZZI, R. Complexity of context-free grammars with
exceptions and the inadequacy of grammars as models for
XML and SGML. Markup Languages: Theory and Practice
3, 1 (2002), 107–116.

[31] ROWE, N. C. Artificial Intelligence through Prolog. Prentice
Hall, Englewood Cliffs, NJ, 1988.

[32] SCHATZ, B., MISCHO, W. H., COLE, T. W., HARDIN,
J. B., BISHOP, A. P., AND CHEN, H. Federating diverse
collections of scientific literature. Computer 29 (May 1996),
28–36.

[33] SHOBOWALE, G. SGML, XML, and the document-centered
approach to electronic medical records. Bulletin of the
American Society for Information Science 25, 1
(October/November 1998), 7–10.

[34] SIMONS, G. F. Using architectural forms to map TEI data
into an object-oriented database. Computers and the
Humanities 33, 1-2 (1999), 85–101. Originally delivered in
1997 at the TEI 10 conference in Providence, RI.

[35] SPERBERG-MCQUEEN, C. M., DUBIN, D., HUITFELDT,
C., AND RENEAR, A. Drawing inferences on the basis of
markup. In Proceedings of Extreme Markup Languages 2002
(Montreal, Canada, August 2002), B. T. Usdin and S. R.
Newcomb, Eds.

[36] SPERBERG-MCQUEEN, C. M., HUITFELDT, C., AND

RENEAR, A. Meaning and interpretation of markup. Markup
Languages: Theory and Practice 2, 3 (2000), 215–234.

[37] SPERBERG-MCQUEEN, C. M., HUITFELDT, C., AND

RENEAR, A. Practical extraction of meaning from markup.
Paper delivered at ACH/ALLC 2001, New York, 2001.

[38] SPERBERG-MCQUEEN, C. M., RENEAR, A., HUITFELDT,
C., AND DUBIN, D. Skeletons in the closet: Saying what
markup means. Presented at ALLC/ACH, Tübingen,
Germany, July 2002.

[39] SPERBERG-MCQUEEN, M., AND BURNARD, L., Eds.
Guidelines for Text Encoding and Interchange (TEI P3).
ACH/ALLC/ACL Text Encoding Initiative, Chicago,
Oxford, 1994.

[40] SPRING, M. B. The origin and use of copymarks in
electronic publishing. Journal of Documentation 45, 2 (June
1989), 110–123.

[41] TANIMOTO, S. L. The Elements of Artificial Intelligence.
Computer Science Press, Rockville, MD, 1987.

[42] UNITED STATES DEPARTMENT OF DEFENSE.
MIL-M-28001 Military Specification: Markup Requirements
and Generic Style Specification for Electronic Printed
Output and Exchange of Text, 1988.

[43] WELTY, C., AND IDE, N. Using the right tools: Enhancing
retrieval from marked-up documents. Computers and the
Humanities 33, 1-2 (1999), 59–84. Originally delivered in
1997 at the TEI 10 conference in Providence, RI.

126

