
XPath on Left and Right Sides of Rules: Toward Compact
XML Tree Rewriting through Node Patterns

Jean-Yves Vion-Dury
∗

WAM project[17]

INRIA Rhône-Alpes
655 Avenue de l’Europe

Montbonnot, France

Jean-Yves.Vion-Dury@{inria.fr,xrce.xerox.com}

ABSTRACT
XPath [3, 5] is a powerful and quite successful language able
to perform complex node selection in trees through compact
specifications. As such, it plays a growing role in many areas
ranging from schema specifications, designation and trans-
formation languages to XML query languages. Moreover,
researchers have proposed elegant and tractable formal se-
mantics [8, 9, 10, 14], fostering various works on mathe-
matical properties and theoretical tools [10, 13, 12, 14]. We
propose here a novel way to consider XPath, not only for se-
lecting nodes, but also for tree rewriting using rules. In the
rule semantics we explore, XPath expressions (noted p, p′)
are used both on the left and on the right side (i.e. rules
have the form p → p′). We believe that this proposal opens
new perspectives toward building highly concise XML trans-
formation languages on widely accepted basis.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory—document transformation, XPath, tree rewriting

General Terms
Language Theory Design

1. INTRODUCTION
Rewriting is a deeply studied branch of theoretical com-

puter science, and influenced an impressive amount of re-
search work, ranging from the general computation theory
up to practical applications. We assume in this paper that
the reader owns some basic knowledge on rewriting theory

∗Visiting researcher from Xerox Research Centre Europe.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’03,November 20–22, 2003, Grenoble, France.
Copyright 2003 ACM 1-58113-724-9/03/0011 ...$5.00.

and also on XPath (see [1, 3] for an exhaustive introduc-
tion) As a computation model, it has some good properties
that attracted the attention of scientists looking for struc-
ture transformation languages : decomposition in small ba-
sic units (rules), structural matching/filtering, modularity,
and static analysis through unification (see for instance ter-
mination proofs based on critical peaks analysis, itself based
on rule’s terms unification [1]).

Rewriting has been applied to string and tree transforma-
tion in compiler construction, and also to more complex data
structures such as (labelled) graph transformation. How-
ever, it has been poorly applied to XML transformation,
partly because the richness of the XML tree model require
quite complex tree pattern matching specifications 1. In
particular, conventional tree patterns requires specifying not
only the interesting sub-structures, but also the ones which
have to be ignored during the matching.

XPath in contrast is a node selection language that brings
a great simplicity by focusing on paths instead of structures,
making powerful hypothesis and metaphors such as implicit
context node and navigation. It is today a widely known
specification, adopted by many programmers and also rec-
ognized as being mathematically tractable [8, 10, 13, 12,
14].

This paper is based on the idea of reusing XPath in sys-
tems of rules like p → p′, where p and p′ are XPath like
expressions. In order to build such systems, one has to ad-
dress two problems:

1. how should XPath be extended in order to embed the
filtering variables required for memorizing and reusing
sub-structures ?

2. how should an XPath expression be interpreted on the
right hand side (p′) with respect to tree construction
and modification?

Wolfgang May [16] proposed to extend XPath toward a
logic based approach, and to describe syntactic and seman-
tic modifications that enable filtering through unification
variables. The proposed approach somehow solves the two
problems above, but requires a deep modification in the orig-

1and also partly because many XML transformations require
complex rule application schemes

inal syntax and semantics. Moreover, the latter is deeply re-
lated to logic and prolog-like execution model, which makes
harder to understand the relationship with the pure XPath
semantics and the structure of the computation. In addition,
this language addresses only monotonic transformations of
trees (nodes and links are never deleted along transforma-
tions).

Section 2 presents a formal definition of the syntax and
semantics of XPath, inspired from [14] and slighly extended
toward handling positional information and node value tests.
Then we introduce the general notion of path containment,
and give a mathematical definition of this property.

The notion of pattern and rule semantics is defined in
section 3, and related to XPath semantics and containment
through a translation function Ξ that transforms an XPath
pattern ~p into an XPath expression p. Thanks to this ap-
proach, the pattern matching operation is nothing else than
finding an environment in which p will select the context
node itself. A small and simple set of operations for tree
modification is proposed in order to define the semantics of
rule application, i.e. the meaning of the right hand side.

We illustrate the expressiveness of the approach in section
4, with realistic examples from MathML [6].

We conclude through a short synthesis and some perspec-
tives on our future work on the topic.

2. XPATH: A FORMAL DEFINITION AND
SOME PROPERTIES

The purpose of this section is to describe formally a lan-
guage derived from a fragment of XPath 2.0 . We believe
that this fragment is expressive enough for most “real world”
applications. However,if it deserves today our research pur-
pose, it is planned to extend it step by step as long as we
are able to maintain its mathematical properties.

2.1 Syntax
The syntax is defined in two stages: (i) the core language,

and (ii) the syntactic sugar, which just rewrites into expres-
sions of the core. The following definition is a slight exten-
sion of [14]

p ::= ∧ | ⊥ | p | p | a ::N |
(p) | p/p | p[q] |
$v | for $v in p return p

Note that according to XPath 2.0 specification, and to pro-
posal [10], but not in accordance with the proposal of [8],
the axes a ::N cannot contain other paths (e.g. a :: (p1|p2)).
A node test N , is either an unqualified name n, the wild-
card symbol ∗ or a test function among text(), node(),
comment(), processing-instruction(), element() ; when
N takes the ns : n form, ns is considered as a namespace
prefix in accordance to the specification, and processed ac-
cordingly. More precisely, it is rewritten into a namespace
attribute (see rule r5f in figure 1).

The important extension we propose with respect to qual-
ifiers is the node set inclusion constraint p1 v p2, which
brings extra expressive power and interesting possibilities for
containment inference (see [14]). The inclusion also brings
additionnal facilities for discriminating embedded structures
and for extending the standard node set equality test in an

. → self ::node() (r5a)
p1//p2 → p1/desc-or-self ::∗/p2 (r5c)
N → child ::N (r5d)
@N → attribute ::N (r5e)
ns :n → n[namespace ::ns] (r5f)
p[?v] → p[. == $v] (r5h)
p[i] → p[position() = i] (r5i)
p[−i] → p[position() = −i] (r5i)

Figure 1: Syntactic sugars (N5)

elegant way. For instance

q ::= true | false | (q) | not q |
q and q | q or q | p v p

However, we propose an extension of qualifier syntax so that
minimal positional information can be expressed (i is the
lexical representation for strictly positive integers), and also
information on linearized content (s is the lexical represen-
tation for strings).

q ::= position() = i | position() = −i | p = s

So, expressions like a[2]/b[@att = ”test”]2 are legal. A (par-
tial) reflexive ordering of N elements is defined in figure 2.

n ≤ ∗ ≤ node()
processing-instruction(), text() ≤ node()

element(), comment() ≤ node()

Figure 2: Partial ordering of node tests

The a symbol denotes axes, ranging over the whole set
defined in the W3C specification

a ∈ {self, attribute, namespace}
∪ {child, parent}
∪ {descendant, ancestor}
∪ {descendant-or-self, ancestor-or-self}
∪ {following, preceding,}
∪ {preceding-sibling, following-sibling}

We define the syntactic sugar (see figure 1 for their transla-
tion into core expressions)

p ::= p//p | . | N | @N | ns :N |
p[?v] | p[i] | p[−i]

We have to comment right now on the p[?v] notation, which
will be our mechanism to introduce filtering variables in
XPath expressions (see coming section 3.1). More precisely,
it rewrites into p[. == $v], were $v is a free variable. Follow-
ing the semantics of the == node set operator (see section
2.2), it means that the matching requires the existence of a
substitution assigning a suitable node value to the variable.
It must thus satisfy set inclusion constraints.

We propose syntactic sugars for qualifier (see figure 3):

q ::= p | p == p | p 6= p |
p < p | p = p | p w p

2equivalent to a[position() = 2]/b[attribute :: att = ”test”]
after syntactic sugar expansion

p → not (p v ⊥) (r6a)
p1 == p2 → (p1 v p2) and (p2 v p1) (r6b)
p1 < p2 → (p1 v p2) and not (p2 v p1) (r6c)
p1 = p2 → p2 < p1 (r6d)
p1 w p2 → p2 v p1 (r6e)
p1 6= p2 → not (p1 == p2) (r6f)

Figure 3: Syntactic sugars (qualifiers) (N6)

We consider that the / and | operators are fully associative,
and that the precedence ordering is (from the tightest to the
loosest):

a ::N < p[q] < p/p <
for $v in p return p < p|p

so that for instance

child ::n[q]/child ::n2[q
′] | descendant ::∗

is syntactically understood as

(child ::n[q])/(child ::n2[q
′]) | (descendant ::∗)

The precedence of boolean operators is the standard one
(not < and < or).

2.2 Semantics
We reuse the denotational definition of [14], also inspired

from [8, 10], extended with a node set parameter S and
with an execution context φ that uniquely associates vari-
able names to tree nodes.

2.2.1 Document model.
The XPath semantics relies on a document-as-a-tree model.

A linear (“flat”) document is seen as a well-formed tree af-
ter successful parsing. A tree is modeled as a set of “typed”
nodes (element, text, comment, processing-instruction, at-
tribute, namespace, and root; the type of a node can be
checked by a corresponding unary predicate).

A well-formed tree contains only one root node, which has
no parent, no attribute and no namespace but may have any
other kind of nodes as children. Moreover, only elements
can have children. Nodes, identified by x and xi in the
sequel, are fully connected in order to form a tree 3. This
structural property relies on the parent/child relation _ that
characterizes the tree, and also its transitive closure _+.
Moreover, a strict ordering, the document ordering �, is
defined on every node x of a tree t, and reflect the order
of opening tags occurrence in the linear document. The
ordering relation x1 � x2 is true if the opening tag of x1

appears before the opening tag of x2, false otherwise.

2.2.2 Semantics of selection.
The selection is defined relatively to a context node x, and

the execution context φ. If φ = {· · · , v = x, · · · } then
φ(v) = x. The function S is inductively defined, i.e. uses
itself for its own definition. The induction is even double,
since it relies on the Q function (defines qualifiers, presented
in the next paragraph) which itself uses S. This is however
quite common in denotational semantics, and just reflects

3Every node x of the tree is reachable from the root ; math-
ematically, ∧ _+ x

faithfully the syntactic structure of the XPath language.

S : Pattern −→ Env −→ Node −→ Set(Node) −→ Set(Node)

S[[⊥]]φ,S
x = ∅

S[[(p)]]φ,S
x = S[[p]]φ,S

x

S[[p1|p2]]
φ,S
x = S[[p1]]

φ,S
x ∪ S[[p2]]

φ,S
x

S[[p1/p2]]
φ,S
x = {x2 | x1 ∈ S[[p1]]

φ,S
x ∧ x2 ∈ S[[p2]]

φ,S
x1 }

S[[p[q]]]φ,S
x = let S1 = S[[p]]φ,S

x in
{x1 | x1 ∈ s1 ∧ Q[[q]]φ,S1

x1 }
S[[$v]]φ,S

x = {φ(v)}
S[[a ::N]]φ,S

x = {x1 | fa(x) ∧ Ta(x1, N)}

The for expression is the only one that introduces a new
(variable, node value) pair into the context

S[[for $v in p1 return p2]]
φ,S
x

= {x2 | x1 ∈ S[[p1]]
φ,S
x ∧ x2 ∈ S[[p2]]

φ,v=x1
x }

The notation fa corresponds to the functions defined in
the table below.

axis (a) fa(x)
self {x}
child {x1 | x _ x1}

parent {x1 | x1 _ x}
descendant {x1 | x _+ x1}
ancestor {x1 | x1 _+ x}

descendant-or-self {x} ∪ {x1 | x _+ x1}
ancestor-or-self {x} ∪ {x1 | x1 _+ x}
following-sibling sibling(x) ∩ following(x)
preceding-sibling sibling(x) ∩ preceding(x)

preceding {x1 | x1 � x}
following {x1 | x � x1}
attribute {x1 | x _ x1 ∧ attribute(x1)}

namespace {x1 | x _ x1 ∧ namespace(x1)}
sibling {x2 | x1 _ x ∧ x1 _ x2}

The T function performs a node test, according to the
table below

N a Ta(N, x)
n name(x)=n
∗ attribute attribute(x)
∗ namespace namespace(x)
∗ other element(x)

text() text(x)
comment() comment(x)

processing-
instruction()

pi(x)

element() element(x)
node() true

2.2.3 Semantics of qualifiers.
The originality here is in the inclusion test (last line), di-

rectly expressed through a set-theoretic inclusion of selection
sets.

Q : Qualifier −→ Env −→ Node −→ Boolean
Q[[true]]φ,S

x = true
Q[[false]]φ,S

x = false
Q[[q1 and q2]]

φ,S
x = Q[[q1]]

φ,S
x ∧ Q[[q2]]

φ,S
x

Q[[q1 or q2]]
φ,S
x = Q[[q1]]

φ,S
x ∨ Q[[q2]]

φ,S
x

Q[[(q)]]φ,S
x = Q[[q]]φ,S

x

Q[[not q]]φ,S
x = ¬Q[[q]]φ,S

x

Q[[p1 v p2]]
φ,S
x = S[[p1]]

φ,S
x ⊆ S[[p2]]

φ,S
x

The former definitions correspond exactly to those of [14],
up to the function signature. We now define the positional

and linearization based extensions

Q[[position() = i]]φ,S
x = let S1 = {x1 ∈ S|x1 � x}

in (size(S1) = i− 1)
Q[[position() = −i]]φ,S

x = let S1 = {x1 ∈ S|x1 � x}
in (size(S1) = size(S)− i)

Q[[p = s]]φ,S
x = let S1 = S[[p]]φ,S

x in
(S1 6= ∅) ∧ (value-of(S1) = s)

Note also that string value tests (p = s) require non empty
path selection. The value-of function returns the concate-
nation of all text leaves descendant of each node in the se-
lection, and moreover, in document order.

2.3 Containment of XPath expressions
The containment relation p ≤ p′ expresses that for all

context node x, the node set resulting from the evaluation
of p is included in the node set selected by p′. More precisely,
this property is defined by

p ≤ p′ iff ∀x S[[p]]∅,∅
x ⊆ S[[p′]]∅,∅

x

The containment inference (see [14]) requires actually a con-
text γ that conveys information about variables (it may be
considered as empty, and just ignored as above).

For instance (example taken from [14]), one can prove that
$v/b ≤ (a|c)/b in a context γ = {v :c|a}

γ ` c|a ≤ a|c
[t1]

γ ` $v ≤ a|c
[d3a]

γ ` b ≤ b
[c2]

γ ` $v/b ≤ (a|c)/b
[d2]

In order to express the containment property in a quite
general way, the static environment γ and the execution
environment φ must be considered in conformance (γ φ)

Property 1. Conformance of an execution environment

γ φ iff ∀v ∈ γ, ∃x, S φ(v) ⊆ S[[γ(v)]]φ,S
x

Thus a containment assertion γ ` p ≤ p′ is expressed through
the following general property

Property 2. Containment.

γ ` p ≤ p′ iff ∀x, φ, S γ φ =⇒ S[[p]]φ,S
x ⊆ S[[p′]]φ,S

x

It turns out to be a quite exciting and fundamental problem,
and also difficult from the computational point of view (see
[13, 12] for model-based approaches, and our later work [14]
for a syntactic-based approach). We propose to use this
relation in order to define the semantics of rules, and also
to establish later some usefull structural properties.

3. PATTERNS AND RULES
Rules have the form ~p → ~p′, where ~p denotes an XPath

pattern, i.e. an expression that contains free variables that
must be instanciated in order the pattern to match. The
matching function M returns a context φ′ that defines a
value to each free variable of the pattern.

A single rule is evaluated in a context including the so-
called “contextual node” (which defines the notion of rel-
ative location in the tree, just as in the standard XPath
semantics), and an execution environment φ that uniquely
defines the value of bound variables.

The left hand side is evaluated in the current node con-
text, and if a matching is found, the tree is transformed by
executing a sequence of operations, such as defined by an
interpretation function Φ.

R : Rule → Env → Node → Bool

R[[~p → ~p′]]φx = let φ′ = M[[~p]]φx in
if φ′ 6= ∅ then (do Φ(φ′, p, p′); true)
else false

We now define the matching, the tree rewriting operations
and their construction by function Φ

3.1 Matching and filtering
Wadler first defined XPath matching formally [8] as a

boolean function, true if the selection is not empty. Ac-
tually we need more than matching, since rewriting tree op-
erations require node identification (filtering). Indeed, we
have to designate the nodes we want to remove or to bind
to other nodes.

Our idea is to mark the various nodes involved in the
selection path with a designation tag, i.e. a p[?v] qualifier,
which is a sugar for p[. == $v], v being an “existential
variable”, not defined in the current φ environment. For
instance, if the following expression

Example 1.

~P = table/tr[?a]/td[?b][2]

matches in environment φ and context node x, a new en-
vironment (a substitution) φ′ will be established. In that
case, the corresponding tr and td element identifiers x1, x2

will be designated by variables $a and $b:

φ′ = {a = x1, b = x2}

We now propose to define the matching function through
a translation Ξ of p terms into a set of containment con-
straints. A matching is found when a solution to the sytem
is found. The terms of this equation have a selection seman-
tics in conformance with the definition of section 2.2. The
small example 1 above is translated into

Ξ(~P) =

{
$a ≤ table/tr
$b ≤ $a/td[position() = 2]

Another way to present this translation is to generate a
unique equivalent XPath term:

Ξ(~P) = .[$a v table/tr][$b v $a/td[position() = 2]]

which should select the context node in a suitable environ-
ment φ′. This translation 4 allows us to define the matching
semantics in a quite elegant way, since it relates directly this
operation to the fundamental XPath selection mechanism.

Definition 1. Matching of a rule pattern.

M : Env → Pattern → Node → Env

M[[~p]]φx = if ∃φ′ | S[[Ξ(~p)]]φ
′

x = {x}
then φ′ else ∅

4We consider that the definition of Ξ doesn’t present tech-
nical difficulties, and will not be detailed here.

Many solutions may exist, and moreover, they can be totally
ordered through �, the document order. In order to apply
a matching rule, it makes sense to choose the first solution
as the default one, since it eliminates non-determinism.

3.2 Operations on the document tree
We propose now a restricted set of primitive operations

used for updating the tree. We define informally the seman-
tics of these operations in the figure 4, through an “object-
oriented” style, x being the node on which the methods are
invoked (we could map these definitions into DOM [4] oper-
ations, but it would be probably less compact). Note that

operation arguments meaning
xi =element() create element xi

xi =attribute() create attribute xi

xi =text(s) content create text xi

xi =comment(s) content create comment xi

xi =pi(t,i) target,inst. create processing instr. xi

x.unbind() detach x from his parent
x.bind(x1) the parent let x be child of x1

x.name(s) the name set element/attr. name
x.before(x1) a node set x’s position before x1

x.after(x1) a node set x’s position after x1

Figure 4: Basic operations on tree

there is no explicit deletion of nodes. We consider that tree
fragments which are let unbound to the tree after a rule
application will be freed from memory by an independant
garbage collector.

3.3 Computation of rewriting operations
Rewriting operations deduced from a given rule are ex-

pressed as a sequence of operations described in figure 4.
We outline below the Φ function principles (lhs and rhs re-
spectively stand for left hand side and right hand side).

Definition 2. The Φ generation function: intentional
definition

1. tree nodes designated by variables in the lhs, and not used
in the rhs are deleted.

2. tree nodes designated by variable in the rhs, and not used
in the lhs are created5.

3. nodes defined in the rhs are created unless they are reused
from the lhs5.

4. nodes of the right hand side are reorganized in such a way
that they will finally match the rhs expression.

We tried to capture the essence of our rule semantics through
the definition above. However, a more detailled definition is
proposed hereafter:

Definition 3. The Φ generation function: a more com-
prehensive definition

1. nodes designated by variables in the lhs, and not used in
the rhs are deleted (the link to the parent node is deleted
through the unbind operation)

2. nodes designated by variable in the rhs, and not used in the
lhs are created 5

3. nodes defined in the rhs and not designated by any variable
are created 5

4. nodes designated both in lhs and rhs, and whose connexity
is modified by the new arrangement are let unbound

5in accordance with the node type specified by the XPath
expression.

5. newly created nodes (or nodes covered by item 4 are bound
to the tree according to connexity information of the right
hand expression

6. nodes are named in accordance with the rhs

7. position of nodes are set in accordance with position infor-
mation contained in the rhs

As an illustration, we provide the reader with the translation
of operations from right hand sides of examples 3 and 2
(see section 4). These operations are to be executed in the
context φ′ built from matching the left hand side, and with
the context node x.

φ′($a).unbind()
φ′($b).unbind()
x1 = element()
x1.name(”apply”)
x1.bind(x)
x2 = element()
x2.name(”root”)
x2.bind(x1)
x3 = element()
x3.name(”degree”)
x4 = text(”2”)
x4.bind(x3)
x3.bind(x1)
φ′($c).unbind()
φ′($c).bind(x1)

x3.after(x2)
φ′($c).after(x3)

Operations of example 3

x1 = element()
x1.name(”degree”)
x1.bind(φ′($a))
x2 = text(”2”)
x2.bind(x1)
x1.after(φ′($b))

Operations of example 2

The reader may note that many issues remain open (we will
review some of them in the conclusion), and are part of
future work. We would like to design an exhaustive trans-
lation, simple enough to enable formal treatment and char-
acterization.

3.4 Well-formedness of rules
We first propose to force syntactical restrictions on left

and right terms: not p qualifiers and p|p expressions must
not contain free variables. This respectively addresses the
problem of (i) introducing variables that possibly cannot
be defined after matching (e.g. not p[?a]) and (ii) non-
determinism in rule application (we avoid such cases at this
point).

Beyond these basic preliminar restrictions, other rule spec-
ification could lead to fundamental problems. We propose
to detail now all such possibilities. Our underlying method
is based on two lines: (i) analyzing hypothesis related to
tree connexity and node type constraints and (ii) analyzing
illegal operations that may be generated. We summarize
these problems below :

1. illegal node type conversions. It can be illustrated by
the following ill-formed rules:

table[?a] → comment()[?a]

which would require changing the type of a node, thus
conduct to a violation of our tree data model, since
a comment node could get elements as children. Mo-
rover, this situation simply cannot be translated into
our basic tree operations, since we do not propose the
corresponding primitives

2. illegal node binding. This comes with rules like

table[?a][@border[?b]] → @border[?b]/table[?a]

3. invalid XPath expression. Terms are considered invalid
when they always evaluate to the empty set ∅, such as

table[not tr]/tr → .

4. multiply defined filter variables. In the following exam-
ple, no solution can be found, since nodes designated
by b are always distinct.

table[?a]/tr[?b]/td[?b] → table[?a]

The first point requires a straightforward type analysis (it
consists in annotating the variables with their node type,
and checking the type invariance). An attractive solution to
the second and third point is using a normalization process,
such as described in [14]. This approach allows reducing any
ill-formed XPath expressions into ⊥, the always void XPath
term6. Moreover, it reduces the syntactic complexity and
eases the definition of subsequent processing. The forth case
requires a quite simple static analysis verifying that no fil-
tering variables are introduced more than once. Note also
that such a case might be detected through the normaliza-
tion process we described above, provided the containment
inference system is complete, which is not yet known ([14];
the completness property is mathematically expressed, but
not proved).

4. REWRITING EXAMPLES
Although the paper does not focus on rule application

models, one can consider standard approaches such as leftmost-
innermost strategies, were the tree is explored node by node,
and rules are tried in order. In any case, the transformation
terminates when no rule can by applied to any node. We
found it interesting to evaluate the expressiveness of our ap-
proach against “real world” examples, i.e MathML normal-
ization and transformation ([6, 7]). Normalization is useful
in order to eliminate assumptions about default values. For
instance the specification says that the degree argument of
root function is 2 if not specified. That is, in content seman-
tics,

root(a) = root(2, a)

and also in presentation semantics
√

a = 2
√

a

The transformation is structurally described as

〈apply〉
〈root/〉
〈ci〉a〈/ci〉

〈/apply〉

→

〈apply〉
〈root/〉
〈degree〉2〈/degree〉
〈ci〉a〈/ci〉

〈/apply〉

This is expressed as

Example 2.

apply[?a][not degree]/root[?b]
→ apply[?a]/root[?b]/f-s ::∗[1][self ::degree][. = ”2”]

6Still it must be slightly extended to consider positional ex-
tensions

Note that the right hand specifies that a new degree element
must be created just after the original root element. The
following solution, syntactically simpler, is computationally
more expensive, as apply and root element are first deleted
and then created

Example 3.

apply[?a][not degree]/root[?b]/f-s ::∗[?c]
→ apply/root/f-s ::degree[. = ”2”]/f-s ::∗[?c]

MathML is split in two parts: one is oriented toward the se-
mantics of mathematical expressions (Content MathML, or
C-MathML), and the other is dedicated to the presentation
of these expressions (P-MathML, see [7] for a tutorial intro-
duction). This fascinating duality opens interesting trans-
formation problems that we believe can be elegantly ad-
dressed through the present proposal. One of them is about
transforming C-MathML into P-MathML already adressed
through XLST in [15]. For instance, the functional expres-
sion

power(add(a, 3), 2)

can be represented as

(a + 3)2

The corresponding MathML transformation is expressed as

〈apply〉
〈power/〉
〈apply〉
〈plus/〉
〈ci〉a〈/ci〉
〈cn〉3〈/cn〉

〈/apply〉
〈cn〉2〈/cn〉

〈/apply〉

→

〈msup〉
〈mfenced〉
〈mi〉a〈/mi〉
〈mo〉+ 〈/mo〉
〈mn〉3〈/mn〉

〈/mfenced〉
〈mn〉2〈/mn〉

〈/msup〉

A solution is proposed through the following rule set

(r1) apply[?a]/power/f-s ::∗[?b]/f-s ::∗[?c]
→ msup/∗[?b]/f-s ::∗[?c]

(r2) apply[?a][add]/∗[?b]/f-s ::∗[?c]
→ mfenced/∗[?b][1]/f-s ::mo[. = ”+”]/f-s ::∗[?c]

(r3) ci[?a] → mi[?a]

(r4) cn[?a][@type = ”integer”]/text()[?b]
→ mn/text()[?b]

Note that r4 just handles integers, and we would have to add
more rules to handle all kind of numbers that are allowed
by the specification. For instance, the following one adresses
complex-cartesian numbers.

(r5) cn[?a][@type = ”complex-cartesian”]/
text()[?b]/f-s ::sep/f-s ::text()[?c]

→ mn/mrow/mi[text()[?b]]/
f-s ::mo[. = ”-”]/f-s ::mi[text()[?c]]

5. CONCLUSION AND FUTURE WORK
We believe that the two main difficulties described in the

introduction are adressed by our proposal:

1. An elegant and simple extension to XPath has been
proposed in order to identify useful nodes when apply-
ing a pattern to a tree.

2. A natural interpretation of the right hand side is pro-
posed ; moreover, it allows deep reorganization of the
tree, such as subtree deletion, node renaming, node
creation and positional changes.

However, many issues remain unclear with respect to the
generation of transformation operations. Some specifica-
tions may generate multiple interpretations, and the Φ al-
gorithm will have to decide which is the best one. Let us
consider the following rule

a/b[?v] → a/ ∗ [?v]

According to our approach, any legal renaming of the $v
node is legal. Which one should be considered ? From
the maximal efficiency point of view, no renaming should
be applied. But in a broader context were we would like
to perform static type checking analysis (let us imagine we
transform an instance of a particular document schema), a
good renaming operation would be the one that preserves
the validity of the instance (e.g. a c if the content model of
a nodes defines only b or c children).

Let us consider another difficult case, were the generated
node must satisfy a complex constraint:

a → b[?c][∗ and ∗ v $c/d]

After matching, this rule has to generate a node b child of the
context node, and at least a node d child of b. So it looks like
that in some cases, the tree operations must satisfy complex
constraints, and it is yet unclear to the author how to deal
with those issues in a simple way. Part of our future work
will be thus to clarify this point and to consider existing
litterature on this topic, e.g. [2].

Another important issue is to relate pattern unification
to pattern matching. For instance, the following two pat-
terns shoud be considered as equivalent, up to a variable
substitution

a[?v]/b/c[?w] ∼ a[?u][b/c[?r]]

One way to explore is to extend XPath containment to pat-
tern containment.

Proposition 1. pattern containment

~p1 ≤ ~p2 iff ∃γ such that γ ` Ξ(~p1) ≤ Ξ(~p2)

Proposition 2. pattern equivalence

~p1 ∼ ~p2 iff (~p1 ≤ ~p2 ∧ ~p2 ≤ ~p1)

For the example above, a substitution could be γ = {v =
$u, w = $r, u = $v, r = $w}

This work on rewriting will be the building block of a
new XML transformation language called Ω, curently stud-
ied in the WAM project [17]. The Ω approach tries to asso-
ciate such transformation rules (a bit more complex, of form
l, r → r′ where l is matching against an input document, and
r → r′ rewrites the output document) with explicit strate-
gies. The idea is to control the rule application and al-
low complex transformation models while maintaining good
properties with respect to type checking and static analy-
sis. We also explore through Ω the possibility of defining

non-deterministic transformation strategies, were the out-
put document might be constructed through backtracking
and some kind of constraint solving.

6. ACKNOWLEDGMENTS
We would like to thanks the many people participating

to this reflexion around XPath and supporting the ongo-
ing work on Ω transformation language: Vincent Quint and
all his team from the WAM [17] INRIA project (especially
Nabil Layäıda and Pierre Genevès); Jerôme Euzenat, Lionel
Villard and Jean-Marc Andreoli.

7. REFERENCES
[1] N. Dershowitz, J.-P. Jouanaud ”Handbook of Theoretical

Computer Science”, Chapter on Rewriting, pp. 243-320
Elsevier, 1990.

[2] H. Common, M. Dauchet, R. Gilleron, F. Jacquemard, D.
Lugiez, S. Tison and M.Tommasi ”Tree Automata
Techniques and Applications”, Technical Report,
www.grappa.univ-lille3.fr/tata, October, 1999.

[3] XML Path Language (XPath) 1.0, W3C recommendation,
16 November, 1999.

[4] Document Object Model (DOM) 1.0, W3C
recommendation, October, 1998.

[5] XML Path Language (XPath) 2.0, W3C working draft, 15
November, 2002.

[6] Mathematical Markup Language (MathML) 2.0, W3C
Recommendation, 21 February, 2001.

[7] Michael Kohlhase, New MathML tutorial, W3C working
group, www.w3.org/Math/Documents/mathml-tutorial.pdf,
11 March, 2003.

[8] Phil Wadler, ”A formal semantics of patterns in XSLT”,
Markup Technologies, 1999.

[9] Phil Wadler, ”Two semantics for XPath”,
www.cs.bell-labs.com/who/wadler/topics/xml.html,
1999.

[10] Dan Olteanu and Holger Meuss and Tim Furche and
François Bry, ”Symmetry in XPath”, technical report,
October 2001, Computer Science Institute, Munich,
Germany.

[11] Alin Deutsch and Val Tannen, ”Containment of Regular
Path Expressions under Integrity Constraints”, Knowledge
Representation Meets Databases, 2001.

[12] Frank Neven and Thomas Schwentick, ”XPath containment
in the presence of disjunction, DTDs, and variables”,
International Conference on Database Theory, 2003.

[13] Gerome Miklau and Dan Suciu, ”Containment and
Equivalence for an XPath Fragment (Extended Abstract)”,
Symposium on Principles of Databases Systems, 2002.

[14] Jean-Yves Vion-Dury and Nabil Layäıda, ”Containment of
XPath Expressions: an Inference and Rewriting based
approach ”, Extreme Markup Languages, Montréal August,
2003. http://wam.inrialpes.fr/publications
/2003/xtrem2003/xtrem2003.pdf

[15] Emmanuel Piétriga, MathMLc2p, XSLT based translation
of content MathML into presentation MathML, April,
2000. http://opera.inrialpes.fr/people/
Emmanuel.Pietriga/mathml2cp.html

[16] Wolfgang May ”XPath-Logic and PathLog: A Logic-Based
Approach for Declarative XML Data Manipulation”,
Technical Report No. 149, Institut für Informatik,
Freiburg, Germany Feb, 2001.

[17] WAM “Web Adaptation and Multimedia”, Research
project from INRIA Rhône-Alpes,
http://wam.inrialpes.fr.

