
1 sur 12

Editing SMIL with Timelines

Cécile Roisin 1,2, Vincent Kober1, Vincent Quint1, Pierre Genevès1, Patrice 

Navarro1

(1) Projet WAM, Inria Rhône-Alpes
(2) Université Pierre Mendès-France , Grenoble

Abstract

This paper presents a timeline approach to editing two of the main components of
SMIL: the time and synchronization model and the animation model. This approach
is illustrated with two prototypes: the LimSee tool for editing SMIL time structures,
and the SVG Animation component included in the Amaya Web client. The timeline 
view is a faithful representation of the temporal behavior of the document where the
author can perform all editing operations related to animation or synchronization
between media. The advantages of this authoring approach are shown through editing
session excerpts performed with LimSee and the Amaya Animation module.

1 Introduction

An increasing number of multimedia applications use the SMIL format. As a
consequence SMIL authors are no longer multimedia specialists but more and
more average content producers. These new users do not feel comfortable with
most authoring tools available today. They need higher level tools. For example,
Inria publishes now many seminars and talks on the Web (refer to the
Smilthèque ) under the form of SMIL presentations where the video recording
of the speaker, his/her voice, the slides and the outline of the talk are
synchronized. People producing this SMIL stuff are from the Communication
department and have no particular programming skills. Other similar examples
can be taken from the educational area or the graphic domain.

The major issue in manipulating multimedia in general, and SMIL in particular,
is to figure out at editing time how the document will look like at presentation
time. For tools developers, representing the time dimension in a way that any
user can comprehend is a challenge. Finding the right editing paradigm for such
a representation is even more challenging. Many multimedia authoring
environments have addressed this issue by providing authors with timelines.
Media objects are represented graphically as boxes whose length reflects the
object duration and whose position on the time axis represents the starting and
ending time. This graphical representation has proven to be intuitive enough to
be well accepted by users. It is then tempting to use this approach for SMIL.
Here we are faced with the issue that time in SMIL is represented as a hierarchy
of operators, which is not exactly the timeline model. Nevertheless, we think
that, to provide comfortable editing features, timelines are worth being



2 sur 12

experimented with SMIL.

To explore the timeline approach in SMIL, we have made experiments with two
of the main features of SMIL: the time and synchronization model and the
animation model. For each of them we have developed a separate prototype, the
LimSee tool for editing SMIL time and synchronization structures, and the SVG
Animation editing component in Amaya for editing animations.

The paper presents these experiments. It is organized as follows: the next section
gives a quick overview of existing SMIL authoring tools. Section 3 describes the
LimSee editor, focusing on the authoring features provided through its timeline
view. Then in section 4 we show how animated graphics can be created and
updated using a timeline view in the Amaya editor. Section 5 gives some
conclusions.

2 SMIL and SVG Animation Editors

Existing tools for SMIL documents can be divided into 4 classes:

Systems using SMIL as an export format only
Authors specify presentations with paradigms independent from SMIL,
and based on a different model. When the authoring process is considered
finished the system can generate SVG or SMIL output. Examples of such
systems are QuickTime, Macromedia Flash5 or SMIL generator for
Powerpoint presentations. The problem with these tools is that some
interesting time aspects of SMIL are not covered, and more importantly
the resulting SVG or SMIL code is often of poor quality and can hardly be
edited any more with a different tool.

Enhanced source-based authoring tools
Most of these tools are extended versions of some XML source editor.
Many popular SMIL editors belong to this class, for instance SMILGen
(RealNetworks) or Tagfree 2000 SMIL Editor (Dasan Technology).
Authors use also plain XML editors for manipulating SMIL source, such
as XMLSpy or Morphon XML. Even if these tools give access to
potentially any aspect of SMIL and provide nice features for creating the
structure and the syntax of SMIL documents, they are very poor when it
comes to visualization and to editing the dynamic behavior of documents.

Template-based authoring tools
In a way to simplify the authoring task, some predefined presentation
structures are proposed. The author just fills in the blanks with his/her
own media to produce the desired result. One of the first template
environments for SMIL was RealSlideShow. Aurora SmilMe is another 
good example of this approach. The simplicity of authoring presentations
with these tools is balanced by the lack of creativity and flexibility, so
their use seems to be restricted to some specific usages.



3 sur 12

High-level SMIL-based semantic views editors
These editors allow authors to handle the genuine SMIL model, including
temporal structures, through a simple user interface. The leader
commercial tool of this category is certainly Grins. Among other systems 
we can cite LimSee presented here or EZer SMIL 1.0 from SMILmedia.

It is important to notice that these approaches are not mutually exclusive. On the
contrary, several of them are often mixed in a single tool. For instance templates
can be provided by multi-view editors, and XML editing features are often
proposed along with timeline views.

While attribute and structure views become more and more sophisticated, the
basic needs for editing dynamic content are not really covered. No serious effort
has been put to provide high level interfaces that could truly help authors in
managing complex SMIL time structures and media synchronization. Moreover
the evolving usage of SMIL and the new features added in its second version
bring out new editing needs that are not yet addressed by the tools listed above.
We have to acknowledge that it is really boring to create presentations with
animations, clipped media and complex inter-media synchronization with the
tools available today.

Professional video editing tools and 3-D editors (e.g. Avid, Axial...) also have an
interesting approach to timelines for editing, even though they do not support
SMIL and use proprietary formats instead. They have demonstrated that a spatial
metaphor for representing time is of great help to authors. However the
underlying time model of each tool implies different authoring functions. Video
tools for instance have a single absolute time model (the one of the physical time
of the video) upon which editing operations and media annotations are based.
Other editors have an event-based approach and so aim at representing the time
point of events and their relationships. SMIL has a mixed time model and
therefore requires to harmoniously integrate several graphical features: absolute
placement, time relations, events and structural time blocks.

Following the experience of managing time through timelines gathered through
such editors as Macromedia Director, Oratrix Grins or the Madeus based 
SmilEditor, we propose in this paper several enhanced editing features that
combine in a single view (1) structure management (2) consistent time
placement of media object or SMIL components and (3) direct manipulation
editing.



4 sur 12

3 Editing the SMIL Time Structures with LimSee

3.1 Context and Objectives of LimSee

Authoring techniques play a pivotal role in our research team because we
consider that the definition and the implementation of authoring services are an
excellent way to assert multimedia models. Following this approach we have
developed the Madeus relation-based model together with a constraint-based
formatter and several authoring and presentation tools in which direct editing
features have been experimented (Madeus-Editor [4]). With the emergence of 
SMIL, we have applied and adapted our editing techniques to the specific
paradigms of the SMIL time model, namely the hierarchical time structure and
the mixed absolute and relative time attributes. After a first prototype called
Smil-Editor [3] that was directly built on top of our Kaomi toolkit [2], we 
decided to redesign an independent tool with the goal to produce a lighter code
and to better fit with SMIL authoring requirements.

This new tool called LimSee focuses on a rich timeline view synchronized with a
hierarchical view. It provides the author with powerful editing features for
composing the time structure of SMIL documents. The design of LimSee
combines graphical objects that give a straightforward perception of time
information together with simple user actions such as mouse selection and
moves. The rest of this section describes more precisely the authoring features.

3.2 The Timeline View in LimSee

The timeline view is a faithful representation of the temporal behavior of the
document. In this view the author can perform all editing operations related to
synchronization between elements. Figure 1 shows the LimSee timeline view.
The left part displays the legend of that timeline: color for object types and
arrows for attributes. Under this legend the user can find the zoom buttons and
the Media view displaying the content of the currently selected media object:
text, image or video. A control panel is added to the latter. For audio media, the
window is empty but the sound is played.

The right part of the view displays the time structure of the document. Elements
are placed on horizontal axes according to their timing. The user can scale this
view in two different ways: by zooming the whole view in or out and by opening
or closing any node (par, seq or switch). In Figure 1, node Par4 is closed while 
nodes Par2 and Par3 are open. Moreover, it is possible to open several partial
timeline views from any node (e.g. Par3 is displayed in a partial view at the
bottom right of Figure 1). To prevent too much information to be displayed in
the timeline, only a subset of the arrows representing time attributes for media
objects or nodes are visible. As SMIL allows only local dependencies, the
displayed attributes are those associated with or inside the currently selected
node. Combining these three mechanisms allows users to cope with the



5 sur 12

scalability issue. Even large and complex time graphs can be manipulated. This
is particularly interesting for huge documents that require authors to work on a
single fragment of the scenario at a time.

Figure 1: Main timeline view of LimSee

Every basic editing operation is available in this view as well as in the
hierarchical view: Copy, Cut, Paste inside, Paste before, Insert and Node
properties.

As shown in the figure, additional information carried by the attributes begin, 
end and dur is displayed when the user moves the mouse over the elements. The
system displays then the arrows representing these attributes. A lighter color is
used to indicate that the duration of an object is partially caused by a
fill=freeze attribute. Moreover the view displays also dependencies between
elements as expressed by the attributes. Red arrows are used for that purpose.
Finally the user is aware of truncated (Cut) elements of the current composite
node as in Figure 2 below. Note that when resizing a media element, a truncated
part of that element may automatically appear to warn the user that its total
duration is greater than the composite in which it is inserted.



6 sur 12

Figure 2: Visualization of truncated elements as defined by a SMIL scenario

The mouse cursor informs the user on the editing operations he/she can perform
on the selected SMIL element. When the cursor takes the shape of a cross, an
user action moves the object along the time axis (thus changing the begin and 
end attributes); if on the other hand it looks as a double arrow, the action
changes the length of the object (duration attribute). Durations expressed as 
relative time placements between elements and represented by red arrows can be
modified directly by moving the mouse while it is on these arrows. It is
important to notice that every editing action implies a consistent update on all
the elements of the document. For instance changing the duration of an object
can induce changes of time positions of other objects of the same composite or
of ascendent composites. This consistency checking is continuously performed
during user actions thanks to the use of the Cassovary constraint solver [1]. This 
feature allows users to perceive on the whole document and in real time all the
consequences of the modification they are performing.

3.3 An Editing Scenario

Consider the following document to be composed from scratch: a 3 minute
video must be played in parallel with a sequence of three groups of three images
each where two groups of images are displayed in parallel and the third in
sequence. Each parallel image must be displayed with some particular duration.

Editing such a document with Limsee is very simple: when the user launches the
editor, a default SMIL document is opened with a basic structure in the
hierarchical view as shown in Figure 3. Similarly, every time a media element is
added to the document, a region is automatically created with default attributes.
The author simply has to modify those values or to link the element to another
region.



7 sur 12

Figure 3: Default structure of a SMIL document

In our example, after launching LimSee, the best way to continue is to create a
par element in the hierarchical or the timeline view. We can then immediately
define the duration of this element by right-clicking the par element and by 
opening the attributes view.

Zooming in the timeline view allows us to adjust the scale of the presentation.

We can now add in the same way the video element and a seq component. The
default duration of the newly created objects can easily be resized using the
timeline view as shown in Figure 4. As we can see, information about the
truncated elements (Cut) is important during this editing step.

Figure 4: Directly adjusting the duration of elements

Note that thanks to the id attribute available with all elements in SMIL, every
component of the presentation can be labelled.

After completing this editing process, the SMIL document can be saved and
played with any SMIL player.

4 Editing SMIL Animations with Amaya

While the initial development of LimSee has put the emphasis on the SMIL 2.0
timing and synchronization model, another effort was focusing on a



8 sur 12

complementary aspect of SMIL 2.0, animations. SMIL Animation is based upon
the SMIL timing model and provides an animation functionality. It was designed
to animate any XML format that requires this functionality. In particular, it is
used to enliven SVG, the vector graphics language for the Web.

The main goal of our experiment with SMIL Animation in Amaya was to
validate the timeline approach when manipulating another timed aspect of
multimedia documents.

4.1 Amaya, SVG and SMIL Animation

Amaya is a Web client that acts both as a browser and as an authoring tool, the
two features being seamlessly integrated. Web pages are edited in WYSIWYG
mode, i.e. the user interacts on a formatted document, but the editor maintains
simultaneously a structured representation of the document, a DOM tree. Every
user command is first performed on this tree, and the part of the tree that has
been modified is immediately reformatted and redisplayed. Several views of
each document may be open simultaneously, to provide a more complete
representation of the document being edited: in addition to the formatted view,
Amaya can display the source code, the DOM tree, the hypertext links, and the
outline of the document. All these views can be edited at any time, and all of
them are synchronized to always present the current status of the document.

To allow users to really edit the Web, Amaya provides direct access to remote
Web sites through the HTTP 1.1 protocol, both for reading and writing Web
pages remotely (the HTTP Get and Put methods are used). Thus users can edit
pages that are stored on servers exactly in the same way they work on local files.

Several document formats are supported natively in Amaya: HTML, XHTML,
MathML, and SVG. This allows authors to edit various types of Web pages,
including compound documents mixing structured text (XHTML or XML),
mathematical expressions (MathML), and structured graphics (SVG). Here we
focus on SVG graphics, but it is worth noting that all other aspects of a
document can be edited simultaneously in a single and consistent environment.
SVG elements are edited through the same model as the rest of the document: a
DOM tree is manipulated through several views, but prominently through a final
presentation view. A few specific editing commands are provided for graphics,
as well as an additional view, a timeline, for manipulating animations.

As opposed to SMIL, where timing is represented in a single structure, the body
of a SMIL document, SVG represents animation as elements interspersed
through the main structure which represents the organization of the graphics.
Animation elements appear as children of the graphics elements they animate.
To allow the author to focus on animation, a timeline view shows all animation
elements and group them together according to the graphics element they
animate.



9 sur 12

4.2 The Timeline View in Amaya

The timeline view in Amaya looks roughly the same as in LimSee, but there is
an important difference. As time in SVG gets in play only for animating
graphics elements, the timeline does not represent media objects, but animations
associated with graphics objects. Each animated object of the document is
represented there, with a graphical representation of its animation elements.

Figure 5, shows the three animated objects of a document. Each object is
represented on the left side of the view by a label with a white background.
Clicking this label highlights the corresponding element in the formatted view,
thus providing the user with the context of that element. The animation elements
associated with each graphics element are displayed in a box next to its label. If
the graphics element has a single animation element (like element Rectangle in
the figure), this animation element is displayed as a colored bar. If there are
several elements, a single gray bar represents the whole animation (Circle, at the
bottom of the figure), and a ’+’ button in the label allows the user to get a
expanded representation. Element MyText, is an example of such an expanded
representation where each animation element is represented by a colored bar.
The button becomes a ’-’ that allows the user to get back to the condensed
representation.

The color of each bar reflects the type of animation (animate, set, 
animateMotion, animateColor, animateTransform) and their position on the
timeline depends on when they start and stop acting.

Figure 5: Animation view in Amaya

4.3 Editing Animations

The timeline view is helpful to quickly perceive the animation of all graphics in
a document, but that is not its only role. It also allows an author to edit
animation in a intuitive way. New animation elements can be created and
existing elements can be modified at any time. Most manipulations are done



10 sur 12

directly on the timeline, such as moving a bar or changing its length. This is
immediately reflected in other views where the corresponding attributes of the
animation element are updated (attributes begin and dur in that case).

In some cases, other views are also involved in editing an animation. As an
example, when creating a movement for an existing graphics element, the user
starts by selecting the element of interest in the main view, he/she then clicks on
the top left button in the timeline view. This creates a new animation element in
that view. The user then points at the starting position and at the ending position
of the movement in the main view. Doing so, he/she can control the key
positions of the animated element in the context of the other graphics elements.
In fact, the user draws the motion path it as if he/she would draw the shape of
any curve belonging to the document. Finally, going back to the timeline view,
he/she can move and/or resize the new bar to adjust the timing. Manipulating
timing in the timeline view is more comfortable, as this allows the user to better
understand the synchronization of a particular element with the other animated
elements. The user can also modify the key positions in the main view, just by
moving points with the mouse. But the other views are still there, and some
parameters may be adjusted in the structure view by editing attributes, as well as
in the source code if necessary.

4.4 Implementation aspects

The timeline view is a structured graphics object itself. For that reason, it makes
sense to implement it as an SVG document, by reusing all the SVG features
already available in Amaya. In addition, SVG is a very complete graphics
language which can represent everything a graphic designer may dream of. This
gave us a lot of possibilities in designing the timeline view, whereas a GUI tool
box would have been a pain, due to the many limitations of this kind of tool.
Also, by using SVG, we take advantage of the full power of the language. In
particular, depending on the complexity of the animations to be represented or
the available screen space, the user may zoom in and out. Finally, the
implementation work is done only once for all platforms. No need to adapt to
several GUIs.

Interaction in the timeline view is handled directly by the graphic part of the
Amaya editor. This is a benefit for the implementer (no new code is necessary)
but also for the user. Editing commands are exactly the same in all views,
including the timeline view. The user can manipulate a bar representing an
animation in the same way he/she manipulates a rectangle in the document.
Obviously some constraints are put in the timeline view. For instance colored
bars can move only horizontally along the time axis and their height can not be
changed individually. Those constraints represent the semantics of the timeline
graphic language.

This approach will make further developments easier. As an example the
keySplines attribute defining the cubic Bézier function that controls interval



11 sur 12

pacing in an animation can be specified by editing a curve in exactly the same
way as any Bézier curve that is part of a drawing.

5 Results and Concluding Remarks

These two experiments in developing authoring services for dynamic
presentations have convinced us that time structures and time dependencies must
be shown to the author as completely as possible and manipulations must be as
intuitive as possible. Moreover providing several view points (graphic, time,
structure, syntax) on the same document through different, coordinated views
has proven very efficient when it comes to edit such complex objects as time
structures and animations.

LimSee is available on several platforms and is freely distributed to both users
and developers under an open source license. LimSee is still a prototype, and
even if a substantial part of the SMIL timing model is covered, there are some
basic elements or attributes that can not yet be edited directly (editing them is
only possible through the hierarchical and attribute views). In particular the excl
element is not yet implemented. Once LimSee offers a complete editing
environment for all features of the SMIL2.0 timing and synchronization module,
the plan is to work on the authoring aspects of other SMIL2.0 modules, with a
higher priority for the linking, animation and transition modules. In fact we want
to continue to investigate new authoring methods for handling SMIL features
that are related to a timed behavior. The timeline views described here need to
be enhanced in particular to give the author some hints about the schedule of
his/her presentation in case of indeterministic behavior resulting from
event-based synchronization and links. Finally we plan to cover other modules
later and to address the problem of editing multiple profiles.

The SVG animation module of Amaya is planed to be integrated in a future
public version of Amaya. At the same time this tool will gain in usability as
some more SVG features are added.

6 Acknowledgements

LimSee results from the contributions of many WAM team members. In 
particular the Madeus model and constraint-based techniques for handling
documents have been introduced by Nabil Layaïda, timelines and direct editing
have been developed by Muriel Jourdan and Laurent Tardif. Patrice Navarro
was the main developer of the LimSee prototype presented here. Daniel Weck is
developing the production version.

The overall development of Amaya is coordinated by Irène Vatton and the SVG
features are implemented by Paul Cheyrou-Lagrèze. Both of them helped us a
lot in developing the animation module.



12 sur 12

References

[1] G. J. Badros, A. Borning., "The Cassowary Linear Arithmetic Constraint
Solving Algorithm: Interface and Implementation", Technical Report UW-
CSE-98-06-04 (1998).

[2] M. Jourdan, C. Roisin, L. Tardif, "Kaomi, A Scalable Toolkit for Designing
Multimedia Authoring Environments", Multimedia Tools and Applications, 
Kluwer Academic Publishers, num. 12, vol 2-3, pp. 257-279, November 2000.

[3] M. Jourdan, C. Roisin, L. Tardif, L. Villard, ’ ’Authoring SMIL documents
by direct manipulations during presentation’ ’ , World Wide Web, Balzer Science
Publishers, vol. 2, num. 4, December 1999.

[4] M. Jourdan, N. Layaïda, C. Roisin, L. Sabry-Ismail, L. Tardif, ‘ ‘Madeus, an
Authoring Environment for Interactive Multimedia Documents’ ’ , ACM
Multimedia’98, pp. 267-272, ACM, Bristol (UK), September 1998.


