
Eliminating Context State from XPath
Pierre Genev�es, Kristo�er Rose

IBM T. J. Watson Research Center
October 6, 2003

Abstract
XPath is a language for selecting sequences of nodes and computing values from XML doc-

ument trees; speci�cally XPath can express navigation in an XML document. A peculiarity of
the XPath semantics is that every expression is de�ned in terms of not just the current context
node in the tree but also the context position and context size that depend on the sequence from
which the current node was extracted. In this paper we show how any expression involving the
context position \position()" and context size \last()" can be transformed into an equivalent
expression that does not, and we explain to which extent the transformed expression is larger
than the original.

1 Introduction
XPath [4] was introduced as part of the W3C \XSLT" transformation language [3] to have a non-
XML format for selecting nodes and computing values from an XML document. (For a gentle
introduction to XPath see one of the numerous books on XSLT; for a more formal presentation
see [12].) Since then XPath has become part of several other standards, in particular the forth-
coming XPath Version 2.0 [2] forms the \navigation subset" of the also forthcoming XQuery XML
database access language.

In this section we introduce XPath, explain the main contribution of the paper, give some
pointers to related work, and present a plan for the main part of the paper.

XPath. In their simplest form XPath expressions look like \directory navigation paths". For
example, the XPath

=company=personnel=employee (1)
navigates from the root of a document through the top-level \company" element to it's \personnel"
child elements and on to it's \employee" child elements. The result of the evaluation of the entire
expression is the sequence of all the \employee" elements that can be reached in this manner,
returned in the order they occurred in the document. At each step in the navigation the selected
nodes for that step can be �ltered with a test and of special interest to us are the predicates that
test the selected node's position in the previous step's selection. So if we ask for

=company=personnel=employee[2] (2)
then the result is all employee elements that are the second employee element among the employee
child elements of each personnel element selected by the previous step.

1

The situation becomes extra interesting when combined with XPath's capability of searching
along \axes" other than the shown \children of" axis. Indeed the above XPath is a shorthand for

=child::company=child::personnel=child::employee[position() = 2] (3)
where it is made explicit that each path step is meant to search the \child" axis containing all
children of the previous context node, and that a numeric index is really a shorthand for a predicate
that tests the position number. If we instead asked for

=child::company=child::personnel=child::employee=following-sibling::�[position() � 2] (4)
then the last step selects nodes of any kind that are in the �rst two sibling positions immediately
after each employee.

More precisely, the result of an XPath 2.0 expression is a sequence: an ordered collection of zero
or more items that can be XML document nodes or atomic values. The evaluation of an expression
depends on a dynamic context of which the main part for the purpose of this paper is called the
focus, composed of three components:

� The context item is the item currently being processed in a path step. When an expression
p[q] is evaluated, each item in the sequence obtained by evaluating p becomes the context
item for the evaluation of q.

� The context position, returned by the expression \position()", is the position of the context
item within the sequence of items currently being processed.

� The context size, returned by the expression \last()", is the number of items in the sequence
of items currently being processed.

In classic interpreted models an XPath expression is evaluated by traversing the input XML
tree according to each sub-expression and updating the focus along the way. This means that the
run-time system needs to maintain the focus state at all times in case it is accessed.

Contribution. In this paper we propose to rewrite XPath expressions that contain context-
sensitive expressions into other XPath expressions without context references. This is useful when
a stateless implementation is desired. Take the position() of (3): the position among the employee
children of each personnel parent (node) can be computed relative to the child by counting the
preceding siblings. Speci�cally (3) is equivalent to
=child::company=child::personnel=child::employee[count(preceding-sibling::employee) + 1 = 2] (5)
More precisely, it turns out that the position can be calculated from expressions relative to the

current node and the node that generated the innermost sequence. This is because these two nodes
de�ne a clean partitioning of the complete collection of nodes. Figure 1 illustrates this (and we
formalize it below).

2

self
ancestor

descendant

pr
ec

ed
ing

following
following-sibling

preceding-sibling

child

parent

Figure 1: Partitions of document nodes from current node.

Related Work. A growing interest in optimization of path expressions has emerged during the
past few years. Several methods have been proposed for rewriting XPath expressions taking in-
tegrity constraints or schemas into account [7]. The containment problem for XPath expressions
has also been investigated using rewriting techniques [11].

Streaming XPath processing has recently gained considerable interest due to its application in
publish-subscribe architectures [9]. A few approaches have been proposed to allow the evaluation
of particular XPath queries in a stream-based context. Some consider a navigational approach
consisting of a restricted subset of XPath composed of forward axes and simpli�ed predicates [5, 8].
Some approaches have shown that it is not necessary to restrict the use of axes for progressive
processing [1, 10]. By proposing rewriting techniques to turn reverse axes into forward ones, they
enabled the use of the unrestricted set of XPath axes in a stream-based context. However, none
of these approaches explain how the context position and -size are maintained and we believe that
the present work could eliminate that burden.

Outline. In Section 2 we present the abstract syntax we consider. The next sections detail the
transformation (the top level in Section 3, simple steps in Section 4, actual \position()" and \last()"
instances in Section 5, and for complex steps with nested predicates in Section 6). Section 7 explains
some optimizations before we brie
y discuss the correctness and complexity, in Sections 8 and 9,
respectively. Finally Section 10 shows some example translations before we conclude in Section 11.

3

UnionExpr u ::= u1 p u2 j =p j p
PathExpr p ::= p1=p2 j s
StepExpr s ::= v j let v = u1 return u2 j a::n l j u l
Axis a ::= child j descendant j self j descendant-or-self

j following-sibling j following j parent j ancestor
j preceding-sibling j preceding j ancestor-or-self

NodeTest n ::= name j � j node() j text()
Predicates l ::= [q] l j �
Quali�er q ::= q1 or q2 j not(q) j u j u1 � u2 j u1 � u2 j e1 = e2
Expr e ::= e1 + e2 j e1 � e2 j k j v j count(u) j position() j last()
Var v ::= $name

Figure 2: Syntax of XPath expressions.

2 Abstract Syntax
The considered abstract syntax of patterns and quali�ers is as shown in Figure 2. The syntax
is somewhat simpli�ed, focusing on simple node steps (composed of one axis and one node test),
complex node steps (involving an expression, with unions for example), and on the role of context-
sensitive expressions \position()" and \last()". Note that what we refer to as simple and complex
node steps respectively correspond to the AxisStep and FilterStep non-terminals of the XPath 2.0
grammar [2].

We have extended XPath with a \let : : : return : : :" borrowed from XQuery [6]. Moreover, we
do not consider \attribute" and \namespace" axes as position in the document is less important
for attribute and namespace nodes. � stands for an empty predicate list.

3 Translation of Expressions
Our goal is to transform an XPath expression into another XPath expression without any \position()"
or \last()" expressions. The translation is performed using a one-pass recursive traversal that prop-
agates information to rewrite \position()" and \last()" accordingly.

We give the formal translation functions in Figures 3, 4, and 8. There are six primary translation
functions (U , P , S, L, Q, and E) named after the non-terminal of the considered abstract syntax
they translate. U and P initiate the traversal of the expression, whereas S translates a node step
and L, Q, and E translate simple node steps composed of an axis and a node test. �, �, and � are
three additional translation functions which perform the same task as L, Q, and E for complex
node steps involving an expression.

We write UJuK for the translation of an XPath expression u and P JpK for the translation of a
path p. Note that in the way dynamic context is de�ned in XPath 2.0, no information needs to be
propagated between two paths.

We write SJsK for the translation of a step s. The \let" expression borrowed from XQuery
is a key component in our translations: \let" expressions allow us to extend the current naming
capability of XPath by making it possible for quali�ers to refer to the node which was selected by
the previous step and used to generate the sequence that is about to be �ltered. For this purpose,
the two translations SJa::n lK and SJu lK introduce a \let" expression, which names the context

4

U : UnionExpr! UnionExpr
UJu1 p u2K = UJu1K p UJu2K

UJ=pK = =P JpK
UJpK = P JpK

P : PathExpr! PathExpr
P Jp1=p2K = P Jp1K=P Jp2K

P JsK = SJsK

S : StepExpr! StepExpr
SJvK = v

SJlet v = u1 return u2K = let v = UJu1K return UJu2K
SJa::n lK = let v = self::node() return a::n Lan;vJlK�

SJu lK = let v = self::node() return UJuK ��UJuK;vJlK

L : Axis! (NodeTest�Var)! Predicates! Predicates! Predicates
Lan;vJ[q] lK(�) = [Qan;�;vJqK] Lan;vJlK(�[Qan;�;vJqK])

Lan;vJ�K(�) = �

Q : Axis! (NodeTest� Predicates�Var)! Quali�er! Quali�er
Qan;l;vJq1 or q2K = Qan;l;vJq1K orQan;l;vJq2K
Qan;l;vJnot(q)K = not(Qan;l;vJqK)

Qan;l;vJuK = UJuK
Qan;l;vJu1 � u2K = UJu1K � UJu2K
Qan;l;vJu1 � u2K = UJu1K � UJu2K
Qan;l;vJe1 = e2K = Ean;l;vJe1K = Ean;l;vJe2K

Figure 3: Translation of expressions

node, and propagate the variable name, in order for the translations of the quali�ers to use it.
\v" stands for an XPath variable name which was not already used in the expression before the
translation process.

4 Translation of Simple Node Steps
In XPath 2.0, simple node steps always return a sequence of nodes ordered in document order.
Context positions are assigned to the items in this sequence in document order for forward axes
and in reverse document order for backward axes.

The translations of \position()" and \last()" expressions only depend on the last axis, the last
node test and predicates used. We write Lan;vJlK for the translation of a predicate list l contained
within a simple node step composed of an axis a and a node test n. v is the variable name previously
inserted with the potentially introduced \let" expression. Predicates of a node step are translated in

5

E : Axis! (NodeTest� Predicates�Var)! Expr! Expr
Ean;l;vJe1 + e2K = Ean;l;vJe1K+ Ean;l;vJe2K
Ean;l;vJe1 � e2K = Ean;l;vJe1K� Ean;l;vJe2K

Ean;l;vJkK = k
Ean;l;vJv1K = v1

Ean;l;vJcount(u)K = count(UJuK)

Echildn;l;v Jposition()K = count(preceding-sibling::n l) + 1

Edescendantn;l;v Jposition()K = count((preceding::n l p ancestor::n l)[self::node()� v]) + 1

Eselfn;l;vJposition()K = 1

Edescendant-or-selfn;l;v Jposition()K = count((preceding::n l p ancestor::n l)[self::node()� v] p v=self::n l) + 1

Efollowing-siblingn;l;v Jposition()K = count(preceding-sibling::n l[self::node()� v]) + 1

Efollowingn;l;v Jposition()K = count((preceding::n l p ancestor::n l)[self::node()� v])
� count(v=descendant::n l) + 1

Eparentn;l;v Jposition()K = 1

Eancestorn;l;v Jposition()K = count(v=ancestor::n l)� count(ancestor::n l)

Epreceding-siblingn;l;v Jposition()K = count(v=preceding-sibling::n l)
� count(preceding-sibling::n l)

Eprecedingn;l;v Jposition()K = count((descendant::n l p following::n l)[self::node()� v])
� count(v=ancestor::n l) + 1

Eancestor-or-selfn;l;v Jposition()K = count(v=ancestor-or-self::n l) � count(ancestor::n l)

Ean;l;vJlast()K = count(v=a::n l)

Figure 4: Elimination of context-references from simple node steps

6

the order they appear in the expression. Because the translation of a predicate can make use of the
previous translated predicates, the l parameter holds the list of all previous translated predicates
of the node step.

The axis, node test, translated predicates and the variable name introduced by the \let" ex-
pression are passed to Q that essentially propagates them to the expressions within predicates.

5 Elimination of Context References
We write Ean;l;vJeK for the translation of an expression e, shown separately in Figure 4. Position
references are translated depending on the axis and the �ltered node test of a step. The translations
take into account that context positions are assigned in reverse document order for backward axes.
Translations were built considering the tree partioning de�ned by the XPath axes (Figure 1). We
illustrate below the four main cases, from which it is possible to derive the others. In each case,
the node that generated the innermost sequence is called \p".

Position reference after an \ancestor" axis. The principle of the translation include counting
the ancestors of the context item inside a predicate. This is done using a recursive call with another
\ancestor" axis (Figure 5). If we name the result i, then i+ 1 is the index of the selected node in
the sequence, in document order. In order to reverse the order, i is subtracted from the translation
of the context size (de�ned in Figure 8).

p/let v=self::node() return
			ancestor::n[count(v/ancestor::n)-count(ancestor::n)=2]

2

node that generated
the innermost sequence

p/ancestor::n[position()=2]

1

3

4

5

v points to p

1

2

3

p/ancestor::n

ancestors of the
context item inside
the predicate

selected node

p p

Ancestor

Figure 5: Position reference after an \ancestor" axis.

7

Position reference after a \descendant" axis The idea behind the translation is to count all
the elements which are between \p" and the selected node, in document order (Figure 6).

p/let v=self::node() return
			descendant::n[count((preceding::n|ancestor::n)[self::node() >> v])+1=12]

p

node that generated
the innermost sequence

p/descendant::n[position()=12]

nodes which are between
p and the selected node,
in document order

selected node

Descendant

1

6

2

3

4 7

9

85

12

10 11

descendant

Figure 6: Position reference after a \descendant" axis.

Position reference after a \preceding" axis The principle is also to count all the elements
which are between the selected node and \p", in document order. (Figure 7).

Position reference after a \following" axis This case is the symmetric to the preceding one.

Other context position references. The other cases are derived or simpli�ed versions of these
four main cases. For example, the idea behind the \child" case is similar to the \descendant" one:
\child" simply additionally takes into account that all the nodes between \p" and the selected
node, in document order, are child of \p". Note that this case does not even require us to introduce
a variable, since \p" can be reached using the \parent" axis. (Some simpli�cations are given in
Section 7.)

Context size references. Owing to the ability to refer to \p" all context size references (\last()")
can be eliminated in the same way: by counting the number of items in the corresponding sequence.
Note that other translations exist; the two examples in Section 10 in particular show some other
ways to proceed.

Efollowingn;l;v Jlast()K = count(=descendant::nl[self::node()� v])
� count(v=descendant::nl)

Epreceding-siblingn;l;v Jlast()K = count(parent::node()=child::nl[self::node()� v])

8

ancestor

pr
ec

ed
ing

p/let v=self::node() return
			preceding::n[count((descendant::n | following::n)[self::node() << v])
											- count(v/ancestor::n) + 1 = 25]

p/preceding::n[position()=25]

node that generated
the innermost sequence

nodes which are between
the selected node and p,
in document order, minus
the ancestors of p

selected node

Preceding

11

12

9
10

2

3

4

1

5

8

7

6

14 13

17

18

15

22

21

16

20

19

24

23

25

p

Figure 7: Position reference after a \preceding" axis.

6 Translation of Complex Node Steps
XPath 2.0 de�nes three operators in order to combine node sequences: union, intersection, and
except [2]. We consider the union operator in this paper. Our way of translating complex node
steps is based on the fact that the result sequence of this operator is in document order.

The idea behind the translation of context position reference is to count all the elements which
are selected by the same sequence and are before the current node in document order. Since
intersection and except operators also return their result sequence in document order, our approach
can also handle them in the same way.

Translation of context size references rely on the same principle also used to translate them in
simple node steps.

Note that XPath 2.0 also de�nes a way to construct a sequence by using the comma operator,
which evaluates each of its operands and concatenates the resulting values, in order, into a single
result sequence. We do not deal with the comma operator in this paper but leave it for future
work. However, we believe that our approach can scale to translate node steps involving comma
operators. The basic idea is to evaluate the size of each comma operand by applying the appropriate
translation; then, using multiple XPath conditional expressions that refer to these sizes, translations
of each operand can be combined to return the corresponding integers.

9

� : Predicates! (UnionExpr�Var)! Predicates! Predicates
��u;vJ[q] lK = [�(u)�v JqK] �(�[�(u)�v JqK])u;v JlK

��u;vJ�K = �

� : StepExpr! Var! Quali�er! Quali�er
�svJq1 or q2K = �svJq1K or �svJq2K
�svJnot(q)K = not (�svJqK)

�svJuK = UJuK
�svJu1 � u2K = UJu1K � UJu2K
�svJu1 � u2K = UJu1K � UJu2K
�svJe1 = e2K = �svJe1K = �svJe2K

� : StepExpr! Var! Expr! Expr
�svJe1 + e2K = �svJe1K+ �svJe2K
�svJe1 � e2K = �svJe1K� �svJe2K

�svJkK = k
�svJv1K = v1

�svJcount(u)K = count(UJuK)
�svJposition()K = let v1 = self::node() return count(v=s[self::node()� v1]) + 1

�svJlast()K = count(v=s)

Figure 8: Translation of complex node steps

7 Simpli�cations
We have presented the translations for the general case. However, note that some translations do
not need to refer to the node that generated the innermost sequence. In particular, translations
of context references after the \child", \self" and \parent" axes do not involve such references.
Consequently, optimized versions L0, Q0 and E0 can be built as a replacement for L, Q and E so
that no let expression is introduced in the corresponding node step, and v is dropped as a parameter:

SJchild::n lK = child::n L0childn JlK;
SJself::n lK = self::n L0selfn JlK;

SJparent::n lK = parent::n L0parentn JlK;
The translations of context-size references can also be simpli�ed for these cases:

E0childn;l Jlast()K = count(parent::node()=child::nl)
E0selfn;l Jlast()K = 1

E0parentn;l Jlast()K = 1
Moreover, in XPath host languages such as XSLT, \child::n[position() = 1]" is a common

pattern. We suggest a simpli�cation of our translation for this frequently handled case:

Q0childn;l Jposition() = 1K = not(preceding-sibling::nl)

10

8 Correctness
Given a formal semantics of XPath we can describe the formal correctness of the transformation.
Consider, for example, the formal semantic function S de�ned by Wadler for XPath 1 [13]: given
an XPath u and a context node x (from which the entire document containing it can be reached),
SJuKx speci�es the node sequence selected by u. In this notation our transformation is correct if

8x : SJuKx = SJUJuKKx (6)
If instead we use the notation from the XPath/XQuery formal semantics [6] then we need to prove
the inference dynEnv ` �u�Expr) r

dynEnv ` �UJuK�Expr) r (7)

that is, in any dynamic environment where an XPath expression u evaluates to a result value r,
the same result value can be obtained from the transformed XPath.

To prove either we shall need an induction that \peels o�" the compositional layers of each set
of rules beyond the scope of this note.

9 Complexity
To understand the complexity of translated expressions we explain the points where the translated
expression is nontrivially larger than the original. As expressed above, our translations involve
four kinds of duplication, i.e., cases where some part of the input expression is copied into di�erent
places of the translated expression. These cases are summarized below:

1. Node step duplication in context-size elimination from simple node steps. The axis and
�ltered node test are both present in the translated node step and in the translation of the
context-size reference occuring in the predicates of the node step. For example,

p=descendant::nl[last() < 2] (8)
will be rewritten into:

p=let v = self::node() return descendant::nl[count(v=descendant::nl) < 2] (9)
where the simple node step descendant::n l is present twice.

2. Node step duplication in context references elimination from complex node steps, for a similar
reason: SJu lK computes UJuK which is both used in the translation of the node step and in
the translation of its quali�ers.

3. Predicate duplication (for simple and complex node steps). Translations of the predicates
that occur between the nodetest and the currently translated predicate are duplicated. For
example the expression

child::n[a][b][position() = 2] (10)
is rewritten into

child::n[a][b][count(preceding-sibling::n[a][b]) = 2] (11)
where node test n and predicates [a][b] are duplicated.

11

4. Filtered node test duplication in context position elimination from simple node steps. The
�ltered node test can appear multiple times in the translation. For example Edescendantn;l;v uses
both the node test n and predicate list l twice.

We believe all duplication cases where an expression is duplicated (i.e., cases 1 and 2) can be
avoided by taking advantage of the naming capability introduced by the \let" expression. Indeed,
we believe that for such cases we can name the duplicated expression, then replace the common
sub-expressions by referring to the variable name instead of duplicating. For example, consider the
�rst duplication case and the expression (8). Instead of rewriting it into (9), we can get rid of the
duplication by using a let expression and the variable name in place of the common sub-expressions.
The expression (8) is then rewritten into:

p=let v = descendant::n l return v[count(v) < 2] (12)
Translation functions must consequently be optimized in order to insert \let" expression appro-

priately. The translation of a simple node step, SJa::n lK, is modi�ed in order to add a second \let"
expression, which binds the common step. For the second duplication case, SJu lK is also modi�ed
in order to introduce the appropriate \let" expression. UJuK becomes the binded expression instead
of self::node(), and only the variable name is passed as a parameter to an optimized translation
function �0.

Note that a step of the form v l (Var Predicates) must also be considered, at least in the output
grammar, to be able to generate such steps in the translated expression. Considering the general
construction v l in our abstract syntax lead to considering the problem of its general translation.
The translation of a step v l must take into account that v can hold a sequence with any kind
of order (introduced by either reverse axes or the comma operator). If the variable is previously
bound in the same expression, it is possible to �nd the binding and translate the context references
by applying the appropriate translation functions relatively to the binded expression.

10 Examples
Consider the XPath expression ==a[b][last()]. This expression uses the abbreviated XPath syntax
and stands for: =descendant-or-self::node()=child::a[child::b][position() = last()]. It is intended to
select the a elements, child of a descendant from the root, which have a child element b and whose
position is the last among their siblings. Using our method this expression is translated into the
expression

==a[b][count(preceding-sibling::a[b]) + 1 = count(::=a[b])] (13)
which does not contain context-references anymore. The XPath abbreviated syntax \::" stands for
parent::node(). (13) is the translated expression using simpli�cations described in section 7. The
optimized translation of (13) is:

==let v = a[b] return v[count(preceding-sibling::a[b]) + 1 = count(v)] (14)
The more complicated XPath expression a=(b p c)[position() = 2] returns the sequence composed

of all the b and c elements, which are in second position in document order, and are child of an
element a. This expression contains another expression as a step. It is rewritten into:

12

a=let v = (b p c)
return v[let v1 = self::node()

return count(v[self::node()� v1]) + 1 = 2]

11 Conclusion
The result of this paper consists in showing how to eliminate the context state from XPath. For
this purpose, we considered an XPath 2.0 fragment extended with XQuery's \let" expression. We
then proposed to rewrite an expression into another one that does not contain context-references
anymore. The main application of this is to liberate implementations from having to keep track of
context information that will never be used or that it is inconvenient to keep track of.

References
[1] C. Barton, P. Charles, D. Goyal, M. Raghavachari, V. Josifovski, and Marcus F. Fontoura,

Streaming XPath Processing with Forward and Backward Axes, ICDE - International Confer-
ence on Data Engineering, Bangalore, India, March, 2003.

[2] A. Berglund, S. Boag, D. Chamberlin, M. Fern�andez, M. Kay, J. Robie, and J. Sim�eon, XML
Path Language (XPath) 2.0, W3C Working Draft, August, 2003, http://www.w3.org/TR/
2003/WD-xpath20-20030822.

[3] J. Clark, XSL Transformations (XSLT) Version 1.0, W3C Recommendation, November 1999,
http://www.w3.org/TR/1999/REC-xslt-19991116.

[4] J. Clark, S. DeRose, XML Path Language (XPath) Version 1.0, W3C Recommendation,
November 1999, http://www.w3.org/TR/1999/REC-xpath-19991116

[5] A. Desai, Introduction to Sequential XPath, Proc. of IDEAlliance XML Conference, 2001,
http://www.idealliance.org/papers/xml2001/papers/html/05-01-01.html.

[6] D. Draper, P. Fankhauser, M. Fern�andez, A. Malhotra, K. Rose, M. Rys, J. Sim�eon, P.
Wadler, XQuery 1.0 and XPath 2.0 Formal Semantics, W3C Working Draft, August, 2003,
http://www.w3.org/TR/2003/WD-xquery-semantics-20030822/.

[7] M. Fern�andez, D. Suciu, Optimizing Regular Path Expressions Using Graph Schemas, In
Proc. of the Fourteenth International Conference on Data Engineering, pages 14-23, Orlando,
Florida, Feb. 1998.

[8] A. K. Gupta, D. Suciu, Stream Processing of XPath Queries with Predicates, In Proc. of the
ACM SIGMOD International Conference on Management of Data, pages 419-430, San Diego,
California, 2003.

[9] Laks V.S. Lakshmanan and P. Sailaja, On E�cient Matching of Streaming XML Documents
and Queries, In Proc. of the Extending Database Technology International Conference, Prague,
Czech Republic, March 2002.

13

[10] D. Olteanu, H. Meuss, T. Furche, F. Bry, XPath: Looking Forward, In Proc. of the EDBT
Workshop on XML Data Management (XMLDM), 2002.

[11] J-Y. Vion-Dury, N. Laya��da, Containment of XPath expressions: an Inference and Rewriting
based approach, Extreme Markup Languages, August 4-8, 2003.

[12] P. Wadler, A Fornal Semantics of Patterns in XSLT, March 2000,
http://www.research.avayalabs.com/user/wadler/papers/xpath-semantics/xslt-semantics.pdf

[13] P. Wadler, Two semantics for XPath, January 2000, http://www.research.avayalabs.com/user/
wadler/papers/xpath-semantics/xpath-semantics.pdf

14

