Containment of XPath expressions: an Inference and Rewriting
based approach

Jean-Yves Vion-Dury and Nabil Layaida

June 19, 2003

Abstract

XPath is simple query language for XML documents
which allows navigating in XML trees and returning
a set of matching nodes. It is used in XML Schema
to define keys and in XLink and XPointer to refer-
ence portions of documents. XPath is a fundamental
part of the XSLT and XQuery languages as it allows
to define matching expressions for patterns and pro-
vides node selectors to filter elements in the transfor-
mations.

We propose to study the containment and equiva-
lence of XPath expressions using an inference system
combined with o rewriting system. The inference sys-
tem allows to assert and prove properties on a class
of expressions. In order to keep the proof system
compact, we propose a re-writing architecture which
allows to transform remaining expressions in a dis-
junctive normal form compatible with this class. In
contrast with model based approaches, the inference
and rewriting systems are applied to the XPath lan-
guage directly. We believe this will help understand-
ing the underlying issues of deciding containment on
the language itself.

1 XPath Containment and

Equivalence

XPath is a simple yet powerful query language for
XML documents, which allows navigating in XML
trees and returning a set of matching nodes. It is
used in XML Schema to define keys and in XLink and
XPointer to reference portions of documents. More

notably, it represents a fundamental part of the XSLT
and XQuery languages, as it allows to define match-
ing expressions for patterns and provides node selec-
tors to filter elements in the transformations.

For a given XPath expression p and an XML input

tree t, p(t) denotes the set of nodes from ¢ returned by
the evaluation of p. More precisely, an expression p is
evaluated relatively to a particular node of ¢, called
the context node (noted x). Thus the selection of
a node set by p in a tree t with respect to a context
node z of t is written p®(¢). The containment relation
between two XPath expressions p; and py (denoted
p1 < p2) holds true when, for any XML tree ¢ and
any context node z, the set of nodes selected by p¥(t)
is included in the set selected by p% (¢).
It is worth noting that the equivalence relation be-
tween two expressions (denoted p; = ps) can be ex-
pressed using two containment relations. (i.e. p; <
p2 and ps < p;), and given a suitable algorithm,
equivalence is reducible in polynomial time to con-
tainment [5].

The containment and equivalence relations for
XPath expressions are essential in each of the pre-
viously mentioned areas. In addition, several funda-
mental problems reduce directly to containment or
equivalence, such as expression optimization and keys
inference. For example, if an expression p; represents
a key for a given Schema, then all p expressions such
that (p < p1) are also keys.

Containment is also a key component for the static
analysis of XSLT Transformations. It can reveal two

aspects of the expressions valuable for transformation
designers and query programmers : consistency and
performance. In practice, complex XPath expressions
turns out to be difficult to interpret, therefore errors
can be easily introduced. The consistency of an ex-
pression p can be verified by checking if it is contained
in the empty path ! (p < L). Performance issues can
also be easily understood with the following exam-
ple: given a path p = pi|ps, if we have p; < po,
then evaluating p; is redundant since all nodes have
already been selected in the evaluation of ps. There-
fore, re-formulating p by the equivalent expression
po represents an optimization of the evaluation of p.
Query optimization aims at reducing unnecessary op-
erations such as tree navigation in the evaluation and
can be more complex to determine than in the previ-
ous example.

2 Related Work

In [5], the authors focus on a complexity analysis of
the containment problem, based on a rudimentary
fragment of XPath. The considered subset is based
on four constructs, namely : the child axis (/), de-
scendant axis (//), wild-cards (*) and qualifiers ([]).
XPath expressions are then modeled as tree patterns.
The containment problem is then (re)formulated in
terms of tree pattern homomorphism search. This
search is used to determine the complexity of the con-
tainment for a range of languages which are subsets
of the four constructs.

In [2], the containment is studied using DTD infor-
mation translated into Simple XPath Integrity Con-
straints (SXIC). The paper shows that for particu-
lar SXIC constraints, namely unbounded SXICs, the
containment problem is undecidable. For the gen-
eral problem, it indicates that the decidability of the
containment for full-fledged XPath remains an open
question. Neven and Schwentick [3] established re-
cently that containment under DTD constraints is
in fact undecidable. If this is certainly a significant
outcome, the proof relies on a somehow complex re-

lthe empty path L selects always an empty node set. First
introduced in [1], - up to our knowledge - in order to ease
formal treatments

duction to the Post Correspondence Problem (PCP
[4]), where the basic tree linearization function yield
plays a key role ; unfortunately, it brings in our opin-
ion insufficient help in understanding the deep nature
of the containment problem.

In [1], the work examines the symmetry of most
of XPath axes in order to optimize XML database
queries. An equivalence of location paths involving
“reverse axes” is first established. This equivalence
relation is used to re-write XPath expressions into
reverse axes free equivalents which reduces the cost
of the evaluation process. The paper shows that most
of the “duplicate” axes can be removed and that for
some others an equivalent formulation in the XQuery
language is possible.

The work found in these studies can be split in two
broad categories:

1. Model based approaches. It relies on a modeling
of the expressions as tree patterns or tree au-
tomatons. Containment is then handled in terms
of low level operations on these structures.

2. Syntaz-oriented approaches. In contrast, the lat-
ter approaches applies syntactic (re-writing) op-
erations on expressions or containment asser-
tions directly.

Syntax-oriented approaches have several advantages.
First, rewritten expressions are XPath expressions
and can be interpreted according to the same com-
mon semantics. This provides more readability of the
different steps used to state the containment.

Second, since containment is established on XPath
expressions directly, it does not introduce different
properties such as those introduced by the models.
For instance, tree patterns do not capture the order-
ing of nodes in trees despite the fact that this feature
is important for XPath expressions.

Finally, reasoning on automatons for containment
is achieved by applying automaton transformations
(complement, intersection, determination). This ap-
proach suffers from the lack of reversible methods
which allows to translate the results of these oper-
ations back from automatons to path expressions.
This precludes for instance, application such as op-
timizing an XSLT stylesheet by static analysis and

relevant replacement of xpath expressions.

This paper is also an attempt to address most of
the issues related to the syntax-oriented approach:
mastering the combinatorial complexity and preserv-
ing the scalability of the formal tools.

3 Goal of the paper

The goal of this paper is twofold. First, it defines
a formal method which aims to analyze and reason
about XPath expressions thank to (i) an inference
system, combined to () a rewriting architecture.

We believe that the formalization we propose is ap-
plicable to the entire XPath language and represents
a generic tool for the study of the related problems.
Additionally, this mathematical tool is relevant to the
study of other aspects such as optimization and path
simplification since it helps exploring, asserting and
proving general properties on the XPath language.
In our knowledge, this is the first attempt in defining
such a logical architecture dedicated to the XPath
language.

Building a tractable inference system is not easy
when dealing with such a powerful language, espe-
cially considering the combinatorial way to express
equivalent paths. The re-writing system’s goal is to
produce a normal form for XPath expressions that
eases establishing containment while maintaining rea-
sonably small the inference system.

The second goal of the paper is to analyze XPath
in order to prove containment assertions on a large
sample of the language. In the light of this analysis,
we look forward to better understanding the language
constructs sources of high computational complexity
and decidability problems, as reported in the previ-
ously mentioned studies. In the longer run, we are
paving the way to the study of important properties
such as soundness and completeness using the con-
tainment approach we propose.

The rest of the paper is organized as follows. In
section 4, we present a formal syntax and semantics
for XPath, which we think captures faithfully a sig-
nificant fragment of XPath 2.0 [6], including all axes
and some of the newly proposed operators such as the
for and the if - -- then --- else constructs. Section

5 presents a proof system for containment and equiv-
alence assertions. This inference system is then asso-
ciated with a transformation architecture, presented
in section 6. After concluding, we draw some per-
spectives on this ongoing work, including indications
on the mathematical characterization of the proposed
approach.

4 XPath Syntax and Semantics

We propose a restricted but faithful version of XPath
2.0 [6], a subset and/or a combination of the ones
proposed by Wadler ([7, 8]), and Olteanu & al. ([1]),
plus some extensions that ease formal analysis, such
as the explicit root node A, the void path L (pro-
posed and defined in [1]). It is one of our future goals
to extend this subset toward even more realistic ex-
tents, notably including important functions such as
position() in qualifiers, as in [8].

Our underlying goal is to remain close to the en-
gineering reality that many developers have to deal
with, and thus trying to give the best applicative field
to the present work.

4.1 Syntax

The syntax is defined in two stages: (i) the core
language, and (ii) the syntactic sugars, which just
rewrite into expressions of the core.

p == A | L | plp | azN |
() | p/p | pld |
$v | for $v in p return p

Note that according to XPath 2.0 specification, and
to proposal [1], but not in accordance with the pro-
posal of [7], the axes a :: N cannot contain other
paths (e.g. a:: (p1|p2)). a node test N, is either
an unqualified name n, the wildcard symbol * or a
test function among text(), node(), comment(),
processing-instruction(), element() ; when N is
under the ns:n form, ns is considered as a names-
pace prefix in accordance to the specification, and
processed accordingly. More precisely, it is rewritten
into a namespace attribute (see rule rsy, fig. 4).

The important extension we propose with respect
to qualifiers is the node set inclusion constraint p C
p2, which brings extra expressive power and interest-
ing possibilities for containment inference.

(@ | notgq |
qorqg | pCp

true | false |
gand q |

q =

A (partial) reflexive ordering of N elements is de-
fined in figure 3. The a symbol denotes azes, ranging
over the whole set defined in the W3C specification

a {self, attribute, namespace}

{child, parent}

{descendant, ancestor}
{descendant-or-self, ancestor-or-self}
{following, preceding,}

{preceding-sibling, following-sibling}

ccccaoacnm

We define the syntactic sugars (see fig. 4 for their
translation into core expressions)

p/flp | | .|
N | QN | ns:N |
if ¢ then p else p

p u=

and similarly for qualifiers (see figure 5)

pP#p |
pdp

g == p | p==p |
pCp | padp |

We consider that the / and | operators are fully as-
sociative, and that the precedence ordering is (from
the tightest to the loosest):

axzN < plg] < p/p <
for $v in p return p < plp

so that for instance

A/child::n[q]/child::ns[q'] | A /descendant::x
is syntactically understood as
A/(child::n[q])/(child::ny[q']) | A/(descendant::x)

The precedence of boolean operators is the standard
one (not < and < or).

4.2 Denotational Semantics

We reused the denotational definition of [1], also in-
spired from [7], extended with an explicit document
root A and with an execution context ¢ that uniquely
associates variable names to tree nodes.

Document model. The XPath semantics relies on
a document-as-a-tree model. A linear (“flat”) docu-
ment is seen as a well-formed tree after a successful
parsing. A tree is modeled as a set of “typed” nodes
(element, text, comment, processing-instruction, at-
tribute, namespace, and root; the type of a node can
be checked by a corresponding unary predicate).

A well-formed tree contains only one root node,
which has no parent, no attribute and no namespace
but may have any other kind of nodes as children.
Moreover, only elements can have children. Nodes,
identified by x and z; in the sequel, are fully con-
nected in order to form a tree 2. This structural
property relies on the parent/child relation — that
characterizes the tree, and also its transitive closure
—+, Moreover, a strict ordering, the document or-
dering <, is defined on every node z of a tree ¢, and
reflect the order of tag occurrence in the linear doc-
ument. The ordering relation z; < z» is true if the
opening tag of x; appears strictly before the opening
tag of x5 in the document, false otherwise (thus, an-
cestors of a node z are considered as being before x;
that is, nodes are totally ordered).

Semantics of selection. The selection is defined
relatively to a context node z, and the execution con-
text . f ¢ = {---,v=ux,---} then ¢(v) = z.
The function S is inductively defined, i.e. uses itself
for its own definition. The induction is even double,
since it relies on the Q function (defines qualifiers,
presented in the next paragraph) which itself uses S.
This is however quite common in denotational seman-
tics, and just reflects faithfully the syntactic structure

2Every node z of the tree is reachable from the root ; math-
ematically, root(z) —+ =

of the XPath language.

S : Pattern — Env — Node — Set(Node)

S[A]¢ = {zy |z =T z Aroot(z1)}

S[L]¢ =0

SIple = Sl?

Slpilp2]s = Slpi]g U S[p219

Slpr/pa]2 = {22 | 21 € S[p1]g A s € S[p219, }
Sloldl2 = {21 |21 € Splg A Qlal2, }
S[$v]? = {¢(v)}

S[a=:N]¢ = {z1|fu(z) ATa(z1,N)}

The notation f, corresponds to the functions defined
in the table below.

axis (a) fo(z)

self {z}
child {z1 |z — 1}
parent {z1| 21 — x}
descendant {z1 |z =T 21}
ancestor {z1 | 1 =T 2}

descendant-or-self
ancestor-or-self

{z}U{z1 |z =T 1}
{z}U{z1 |21 =+ 2}

following-sibling sibling(x) N following(x)
preceding-sibling sibling(z) N preceding(z)
preceding {r1 | 21 € z}
following {r1 |z <€ 21}
attribute {z1 |z — z1 A attribute(z;)}
namespace {z1 | * — z1 A namespace(z1)}
sibling {z2 |21 > 2 A 21 = z2}

As noticed in the XPath 2.0 specification, the axes
self, ancestor, descendant, following and preceding
constitute a (non-overlapping) partition of the tree.

The T function performs a node test, according to
the table below

N a To (N, x)
n name(x)=n
* attribute attribute(x)
* namespace | namespace(x)
* other element(z)
text() text(z)
comment|() comment(z)
processing- .
instruction() pi(z)
element() element(z)
node() true

The for expression is the only one that introduces
a new (variable, node value) pair into the context

S[for $v in p; return p,]?
= {5172 | X1 € Sl[pl]]g ATy € Sl[pz]]g,v:zl}

semantics of qualifiers. The originality here is
in the inclusion test (last line), directly expressed
through a set-theoretic inclusion of selection sets.

@ : Qualifier — Env — Node — Boolean

Q[true]? = true

Q[false]? = false

Qg1 and ¢2]2 = Qlai]g A Qlae]§
Qg or 2]y = QlalV Qle]
o [(] }4 = Qldl?

Q[not g¢]2 = —Q[q]?

Qi Cp2le = SImlg CSlpal?

5 Inferring containment

5.1 Judgments, context and logical

rules

The inference system we present in this paper, noted
7 allows asserting and proving containment proper-
ties by using judgments, noted v F p; <p2 and
rules like

A ---

B

where A; and B are judgments, and r is the rule
name. Rules like these mean that if all judgments A;
are true, then B is true. This well-known notation
allows to build proofs as a tree such as

[r]

A B
c

D E
I 1 [r1]
provided the user is able to unify expressions with
the logical constituent found in rules. Judgments
like v F p1 < p2 means that the path p; is con-
tained by the path ps, given the context . This
latter contains couples of variable names and values,
noted v:p, where variables names v are uniquely de-
fined. The context is also a mapping, and ~y(v) will
return p, provided v is defined in 7, abbreviated as

[r1]

[ra]

v € 7. Sometimes, the context may be omitted from
the proof tree, when it is invariant or understood as
not significant. The assertion “the path p; is con-
tained in the path p,” means intuitively that the set
of nodes selected by p; is included ® in the set of
nodes selected by ps.

Proof trees can also be developed by using an
equivalence relation = on xpath expressions or judg-
ments. If for instance, we define a path P, = Py/c,
it is legal by construction * to derive a proof step by
simple substitution, such as ®

Py/c<p il

P<p (=]

The figures 6 and 7 propose useful equivalences,
which are provable using the formal semantics pro-
posed in section 4.2 (see [1] for similar demonstra-
tions). We note Z= the inference system Z, defined in
the coming sub-section, used together with the equiv-
alence relation.

5.2 Basic containments

We introduce first two basic rules expressing that, in
whatever context v, it is always true that (4) the void
path L is contained in whatever other path p, and (%)
any path p is contained in itself

[e1] [e2]

vE L<p Yy p<p

The union operator can be present either at the left
hand or at the right hand of a containment assertion.
The latter case raises two possible choices for further
containments

Yy Ep<ps
v p<p|p

yEp<m
— T [ead]
v p<p|p

[c2b]

while when located at the left hand, it requires both
left sub-terms to be contained by the right term, as

3following the set-theoretic definition of inclusion

4mathematically, this equivalence is necessarily fully con-
gruent with respect to a sound containment relation

5In proof tree, [=] are usually not shown for the sake of
compactness

expressed by

YyEp<p vyFp<p
YyEpip<p

[c2c]

Now we can prove that a/b < a/b | ¢/d in the empty
context thank to the following proof tree

[c2]

0 F a/b<alb
0 F a/b<a/b|cjd

Such proof relies on a very basic mechanism, the
unification, which allows to identify the term a/b <
a/b| ¢/d to the term p < p; | p2 in the bottom of the
rule co,, thanks to a substitution

p = afb
P = a/b
p2 = c¢/d

Applying this substitution to the top of the rule al-
lows the further development of the tree.

Finer comparisons require handling the / compo-
sition operator, quite fundamental in XPath. This
is achieved by this very generic rule that conducts
symmetrical comparisons

YyhEp<ps YyEp2<pmp
v F pi/p2 < p3/ps

[d2]

and using [d3], we can prove that a/b < (a|c)/b:

@i—aga[c2][:
0Fa<ale " OFb<b
0+ a/b<(alc)/b

The context is useful to handle paths defined with
variables. Using rules below

[c2]

[d2]

v F p<y)

7w <p
v Fp<$v

3a
one can prove that $v/b < (a|c)/b in a context v =
v:icla

]

—_— [t1
- <
~ cla < ale (d5e]

v F $v<alc yEbL<b
v F $v/b < (alc)/b

[c2]

[d2]

Note that ¢; is not a basic rule but the following
theorem (the context, invariant, is omitted)

[c2]

[e2]

p1<p1 P2 < po
—————— [e] T [c2d]
p1 < p2|p1 p2 < p2|p1 feae]
2¢
p1|p2 < p2lp1

We need more rules in order to compare steps. Let
us consider the following rule, where a,a’ denote axis
names and N, N’ node tests:

a<a’ NN
vy F a:N<a:N!

[d1]

Considering that axes are partially ordered through
the reflexive relation of Fig. 2, and that node tests
are similarly ordered by the relation of Fig. 3 , we
can prove that child::b is contained in descendant:: x,
since

child < descendant b < %

child::b < descendant:: x

[di]

5.3 Qualifiers

Comparing qualified paths such as p[q] requires a new
judgment, the implication. This is captured by the
following rule

YyEDL<p YFE =g
v F pilai] < p2fge]

[ds]

Consider for instance a[b/c] < a[*], which should
be provable, since both expression conditionally se-
lect a elements, but with more restrictive condition
for the former one. In our approach, it is captured
by b/c = x, which is equivalent by definition to
not (b/c C L) = not (x C L). The rules for rea-
soning on this kind of relations are developed in a
coming subsection.

We focus now on applying d3 in combination with
equivalences of figure 7 in order to illustrate how to
assert various containment properties involving qual-
ifiers. For instance, [d3] allows proving a[b][c] < a[#],
if we admit for now the sub-proof related to the im-

plication:

[e2] band c= * (-

alb and] < a[*]
afb]le] < al*]

a<a

[da]

It is similarly possible to compare a qualified xpath
with an unqualified expression, e.g. a[b] < a|b

[ez] b = true [l

a[b] < aftrue]
alb] < a
alb] < alb

a<a

[ds]

[c2a]

5.4 The for construct

the for construct must also be compared too, and we
consider first the left hand case

Y,vipr F pa<p
~v F for $v in p; return po

veEy [d4a]

<0p

Note that the content of the for construct is evalu-
ated in a new enriched context, where the variable $v
has been introduced with the right value p;. Here,
the variable name must not be already defined in the
context.

The right hand case is pretty similar, excepted that
an additional condition must be verified, in order to
preserve soundness. If p; is empty in the expres-
sion for $v in p; return po, the variable $v won’t
take any value, and thus the inner expression py will
never be evaluated. In conformance with the for-
mal semantics, the whole construct will select noth-
ing, and thus can only contain the L path. For
instance, it’s easy to prove the a/b is equivalent to
for $v in a return $v/b, but this is not the case for
b and for $v in a return b. Indeed, this latter path
is only equivalent to b[a].

v,v:p1 B p<p2
yEFpEl=>pCl

v F p < for $v in p; return p,

vy [das]

Name conflicts occur when comparing two different
for constructs which define the same variable, since

the inference system only use one context. Let us

consider the following example

P, = for $v in a return ($v/d)
P = for $v in a/b return ($v/x)
P1 /C = P2

In such case, it’s possible to use an a-substitution,
i.e. a renaming operation propagated throughout the
whole term, very much like in the lambda calculus
framework. The substitution of $v by $w in path p
is noted p[$w/$v] and we do have p = p[$w/$v] as
long as $w is not used in p. This latter condition is
required prior to using any a-substitution. Thus the
proof of P, /¢ < P, comes in four parts, only three
of them being developed here (the forth one, the C
judgment (an implication) will be shown later)

child < child ¢ < %
child::c < child:: %
c<=x
via/b F Pifc < $v/+
@ |- Pl/CSPQ

[d1]
A

d2] C

[dap]

b<b [c2]
via/bjw:a F $Sw/b<a/b
via/byw:a F $w/b < $v
v:a/b F for $w in a return $w/b < $v
via/b F Pi[Sw/$v] < $v
via/b F P < $v
A

[d2]

[d3b]

[d4a]

via/bjw:a F a<a lea]

via/byw:a F $w<a
B

[d3a]

0 Fa/bC Ll=P/cC L
C

5.5 Qualifier implication

Now we present the second piece of our inference sys-
tem, based on an implication judgment v F ¢; = g2,
which means if ¢; is true in context 7, then g» is true
in the same context. We propose first the most gen-
eral set of rules (the context -, invariant, is omitted

for clarity).

p3Epr p2Eps
P1 Ep2 = p3 C py

[e1]

This first rule permits many trivial (but often useful)
inferences, such as p; C ps = p; C py and also less
obvious ones like descendant::x C b= %/b C .

All other e; rules defined hereafter are directly log-
ically derived from the standard boolean implication.

2= q
not ¢; = not ¢

[e3b]
false = ¢

[esal

q = true

[e2]

The following subset deals with conjunction

a2 =q
¢ and ¢; = ¢q
g2 and q; = q

q=q q=q
¢=q and ¢

[es]

While this one addresses disjunction

q = q2 qQ=q Q2=>q[]
e
q=q or ¢ grorg=>q
q = q2 or q;

5.6 Inferring emptiness

XPath Emptiness, e.g. a/b C L appears quite often
in qualifiers. It turned out that such relation rep-
resent a particular containment case we have to deal
with. An important qualifier equivalence, defined be-
low, characterizes this particularity.

p/p2C L = pifnot pp C1L]C L

Used in conjunction with f; or fs below, it opens
many possibilities for building proofs

mEl=pLCl
pilei] C L= pofg2] T L

[f2]

p1 < p2 not ¢ = not ¢

pila] E L = poge] E L

[£3]

It can also be used in order to prove the previous C
assertion

T = lel

afb<ap ' T<I
a/bC 1L =a/bC L
a/bEJ.ﬁPl Cl
a/bltrue]C L = Pilnot cC L]C L L2
a/bEJ_:>P1/cEJ_
c

[e1]

]

Rules e;, fa, f3 still cannot address two particular
cases. this first one is captured by the following rule

child::x C 1 = descendant:: N C L [F4]
Intuitively, descendant:: N for instance can be under-
stood as
child::x/ - -- [child:: N
~——————
n>0

On such a path, one could apply the rule f,e;, if
we were allowed to handle infinite terms. The other
similar case to be considered is

parent::x C L = ancestor:: N C L Lfs]

Other “multi-steps” axes, such as following, have no
single step equivalent, thus they are not to be con-
sidered.

5.7 Multi-step axis

At this point, our inference system doesn’t capture
an important containment case, such as

x/b/b < descendant::b

The reader may verify that no rule can be successfully
applied in order to complete the tree

child < descendant b <b
?) child::b < descendant::b
x/b <. g b < descendant::b
x/b/b < ./descendant:: b
x/b/b < descendant::b

[di]

We propose now a quite generic rule, since it ad-
dresses all “multi-step” axes

ay € {descendant,ancestor,following,preceding,
following-sibling,preceding-sibling}

a1::N1 Sa2::N2 P1 §p2/a2::*
pr/a1:: N1 < p2/az::No

With g, it’s possible to prove:

[91]

[62] D
child < desc b<b a<la

child::b < desc::b 4] a/desc::b < a/desc:: *
a/desc::b/b < a/desc::b

[d2]

[91]
with
desc < desc b < %

desc::b < desc:: *
D

[di]

5.8 Pushing context in expressions

Now comes much more difficult cases. Our inference
system cannot establish two important cases cap-
tured by the examples below

a/bfc < aldesc::c]/xk
a/b < x/x[anc:a]

E
F

e

The problem expressed by the E judgment is that
the right context b/c is missing in order to compare
the a node from the a/b/c expression with the a node
from the second one. Using d5, the proof construction
attempt is stopped after applying ds:

2

a<a [e2] true = desc::c 7l (4]
aftrue] < a[desc::c] ?
a < a[desc::]

a/b/c < al[desc::c] [xk

b/c < xk [}

[d2]

However, since ¢ is present as a second level child of
ain a/b/e, a < a[desc::] should be deducible since
the right hand qualifier condition is actually satisfied.

Similar situation holds for the F' judgment; the
problem comes from the left context a/b of the ¢ el-
ement comparison. It should be possible to deduce
from this context that ¢ has indeed a a ancestor.

We propose to tackle this problem by adding to Z
a variant of the ds rule:

pp2] < pslp4l ,
pp=auzN/py, APl < papz?] o]
ps = a’tN/p) p1/p2 < p3/p4 *

Intuitively, the idea is to push left and right contexts
into qualifiers, in order to propagate the information
toward the inference process. The notation p * cor-
respond to the application of a small inductive trans-
formation function that computes a reversed xpath
expression. It has the following property for all paths
p
pla:N/p® <.

It is formally (and explicitly) defined by the function
of figure 1, and it is based on the fact that each a axis
has its own reverse axis ¢ noted @, such as shown be-
low (see also [1] for another work using this symmetry
property); Also the reader can take a closer look at
the reversed for expression, the most complex one.
Notice that it involves a fresh variable (a new one,
not present in the reversed sub-term).

a a
self ~ self
child ~ parent
descendant “ ancestor
following ~ preceding
following-sibling ¢+ preceding-sibling
attribute — parent
namespace — parent

5.9 Capturing contradictions

Another category of difficult containment cases is il-
lustrated by

ab/c]not b)) < L
a[not b]/b < 1

where the qualifiers, being contradictory, force the
left hand path to always evaluate to the empty set.

8Note also that due to the intrinsic asymmetry of attribute
and namespace axes [6], we do not have p =p

We propose now two rules go, and gop that address
these cases

[92a] [g2s]

true=>pC L
p< L

not ¢ = ¢2

true = plg; and ¢2] C L

One can prove the example above

not (bC 1)=>mnot (bC 1) =]
true = q[(bC 1) and not (bC L)]C L [g2]
true = a[bC L]not (bC L)]C L
true = q[bC L]b]C L
true =>aqfbC L]/bC L
abC 1]/b< L
a[not b]/b < L

[924]

Note that we used a theorem t5, easy to prove using
e; rules

— [t]
q=4q

5.10 Comparing Relative and Abso-
lute paths

So far this paper did not address mixed containments,
e.g. a/b < A//b which should be obviously estab-
lished in this particular case. Note that for the XPath
language, a relative path is not just a path that do
not start with the root. Indeed, a/ A /b is equivalent
to A[desc::a]/b, and is thus an absolute path. Thus a
relative path must not contain any A node, excepted
in qualifiers, and we note p such paths. The following
rule, as a first attempt, seems appropriate to address
mixed containment

N < Ns
p/a:: Ny < A/descendant:: Ny

[9s]

A rule like g3 indeed allows proving a/b < A//b

b<b
a/b < A/desc::b [os]
a/b < N/desc::b| A [self::b
a/b < A/(desc::b|self:: b)
a/b<A//b

[c2a]

10

However, it cannot be used for proving more subtle
cases like

A/desc::bla]
A[.//a]/desc:: %

parent::a/parent::b

<
a/b <

So we propose a more powerful variant that covers
these cases

Ny <Ny [AL//B/az Nl [B7] < [Ala]] [g2]
p/a: N1 < Alg1]/desc:: Na[ga]

93]

5.11 Synthesis

Considering increasingly complex cases, we tried to
guide the reader through the difficulties of xpath con-
tainment, and also through the difficulty of build-
ing a powerful yet simple inference system. Still at
this point the system is far from being complete.
The (formal) soundness is being checked, and par-
tially achieved. The next stage will be to achieve
a (more difficult) completeness proof, or to under-
stand were the remaining difficulties lie, because we
actually don’t know if the whole system, comprising
rewriting extension proposed next section, is com-
plete.

Before reaching this stage, some simple cases are
simply not covered. We would like to show for in-
stance that

al.. <.

or that
following-sibling:: * preceding-sibling::a < ../a

We believe that such cases should not be addressed
through extending the inference system. Indeed, this
last must be kept as small as possible, and thus,
mathematically tractable. Another possibility could
be to enrich the equivalence relation. But in order to
be useful and clear, the equivalence must stay quite
intuitive and should not involve too complex and too
much articulated transformations. Such operations
must be clearly decomposed and even justified in or-
der to be used for inferences.

We propose to address remaining containment
cases through transforming the xpath expression

11

into a normal form, more suited to handle compar-
isons. Such transformation can be achieved thank
to a rewriting process, often mathematically more
tractable and easier to understand than algorithms.
We describe now the transformation architecture
which allows us to go one step forward.

6 Transformation Architecture

6.1 overview

We propose a three stage transformation architecture
that preserves the semantics of xpath expressions.
The first one is a rewriting that bring any xpath un-
der a disjunctive normal form p1|---|p, by applying
as much as possible rules from a set N, just derived
from the equivalence =. This stage strongly reduces
the syntactic complexity, so that less rules have to
be defined in subsequent stages. When applying as
much as possible rules of A, this gives a rewriting
closure (or relation) noted N*.

The second transformation is a mixing of three
rewriting:

1. A* performs axis rewriting in order to simplify
and eliminate steps as much as possible.

2. O* performs qualifier simplification and elimina-
tion

3. N*, as defined above, normalizes expressions
reintroduced by the right hand sides of A4 and
Q rules.

The combination of the three rewriting stages is
noted (N* o Q* o A*)*, where o is the standard func-
tional composition. This scheme expresses that we
apply first all rules from A as much as possible, then
the same for Q then the same for N; the whole
process itself is iterated as much as possible, before
reaching a terminal form p

The whole picture is captured by the following di-

agram
N* _ (N*0Q"oA™)* "
n y41 Dy
A
< <
Nt T Vregrony” M
D2 D2 Dy

6.2 Disjunctive normal form

The rewriting relation N'*, reduces any term p to a
normal form p, that is semantically equivalent, but
syntactically simplified. the rule set N is the union
of several subsets

N=N1U"'N6

Rules of V) (fig. 8) are used in order to bring xpath
expressions under a disjunctive form, i.e. where the
disjunction symbol is always on top of the term,
while qualifiers are brought under conjunctive form
through rules of N> and N3 (see fig. 9 and 10). More-
over, many expressions equivalent to L can be de-
tected at this early stage and propagated to top level
thank to subset Ny (see fig. 11). Subsets N5 and
N (see figures 4, 5) are dedicated to syntactic sugar
expansion.

The rewriting can be applied for instance to

a/(ble)[d]:

a/(lo)ld] == a/(ld] | cld])
= a/bld] | a/c[d]

A subset of NV is dedicated to the expansion of syn-
tactic sugars, so that for instance,

a/bld]

ORI child::a/ child:: b[child:: d]
T8 child::a/child::b[not (child::d C 1)]

Moreover, qualifiers are inserted so that each step is
finally associated with at least one “true” qualifier

child::a/child::bnot (child::d C 1)]

—+ child::a[true]/child::b[not (child::d[true

6.3 Rewriting Axis and Qualifiers: A*
and Q*

The idea here is to apply rules that suppress steps
as much as possible, while preserving the semantics
equivalence. This operation is to be applied both to
the principal axes and to axes embedded in qualifiers.
For instance, a/.. can be transformed into .[a], which
opens now the possibility to use Z in order to prove
that .[a] < . This is captured by the rules

-
p2 —rpy p1 < o
[h1] [h2]
1 < P2

-
p1—p) p1<pe
1 <po

As an application example, we have

[esa]

child::a £ 1 = true

[c2]
self:x< self:%

A self::#[child::a L 1] < self:: [true] Lds]
self::#[child::a £ 1] <. th]
af..<. !
with

A=a/.. = self:x[not (child::a T 1)]

In this expression, a represent the concatenation of
all rule names (in the application order) that have
been applied to derive the normal form. This deriva-
tion can thus be checked in order to verify this asser-
tion.

Simplifying principal axis. In the example

above, we used the rule

a € {child,attribute,namespace}

(ra1) { .

Actually, many rules are required in order to achieve
complete axis simplification. A methodical explo-
ration requires considering all possible pairs of axis,
ignoring the redundant ones, i.e. those which can be
expressed through other axes.

To this purpose, the first rule set A; is dedicated

a:: N1 [q1]/parent:: Na[qo]
self:: Ny [ga][a:: Ni[q]]

1E J-)t]o axis name suppression, as shown by figure 12, and

12

applies to descendant-or-self, ancestor-or-self, follow- 7 Conclusion and perspectives

ing and preceding axes.

The second rule set Ay (Fig. 13) derives empty
expressions induced by axis composition, such as
attribute :: N/child :: N which always evaluates to
empty node set since an attribute has no children.

Then come nine rule sets, Az up to Az, dedicated
to each of the nine remaining axes. Rules are pro-
posed only when it is possible to gain structural sim-
plifications. For instance,

child::a[q:]/ child:: b[g2]
clearly cannot be simplified in this sense, whereas
desc::a/child::b — desc::b[parent::a]

brings a structural simplification, by pushing infor-
mation into qualifiers. Some rules require using the
powerful for construct, which captures current con-
text and enables useful rewriting, as already shown in
[1, section 5]. Let us consider the following (wrong)
rewriting

child::a/desc::b — desc::blancestor:: a]

which is not sound (more precisely, it doesn’t pre-
serve the exact semantics, since the new expression
selects more nodes that the old one). Indeed the ex-
act rewriting has to use the for construct:

child::a/desc::b —
for $v in child::a return desc::b[(. C $v/desc::b)]

The rules of 4 must be applied with a left-to-right
implicit strategy in order to be sound, because this
is the natural orientation of the / operation (which
is of course not commutative).

Qualifier simplification. The purpose of the A*
rewriting is to push information into qualifiers in or-
der to simplify axes. Now we propose to simplify
qualifiers through another rewriting, noted Q*. Let
us consider the following case as an illustration of this
process

child::b[self:: x[c]/d Z L)] — child::b[c and d]

Note that the complexity of the principal axis is un-
changed, whereas the complexity of the inner path
(embedded in the qualifier) is decreased.

13

In this paper, we proposed a new approach for the
study of the containment problem based on both a
logical and rewriting approach. We have first intro-
duced an inference system Z = which allows asserting
and proving properties on XPath expressions with the
help of an equivalence relation =. In order to keep
this inference system reasonably small, we have pro-
posed a multi-stage re-writing architecture. The first
stage produces a disjunctive normal form, on which it
is simpler to define the other stages, roughly, simpli-
fication rules that bring terms p under a form more
suitable for comparisons, p. Notably, it should be
possible to infer containment on such terms without
the help of the equivalence relation. This may help
tackling problems introduced for instance by com-
mutative laws such as ¢ and ¢» = ¢» and ¢;, which
potentially involve infinite proof tree developments.

We intentionally tried to address the XPath lan-
guage itself rather than a model or a too restrictive
subset, even if it is a challenging task. This allows
the study of properties on realistic path expressions
and also to check the feasibility of rewriting based
applications.

We are currently investigating mathematical proofs
for properties such as soundness, completeness of the
inference system Z (which doesn’t use equivalence but
works on reduced terms p), and also termination and
soundness of the the rewriting architecture. We for-
mulated the soundness as (V pi, P2, z,7)

Proposition 1 Soundness
yEB<B: A vlkd = S[nlfCSlpld

The expression 7 IF ¢ means that ¢ and v are in con-
formance with respect to the definitions they contain.
We are exploring a proof using a double structural in-
duction based on the following induction hypothesis
(|p| is a suitable structural complexity measure)

Hi
YyEDP<p2 A vlF¢ = S[pi]f¢ C Sp]?
YEa=¢ Ayt = Qlall = Slel?
Ip1| + |q1] <

The completeness theorem is certainly harder, and
we actually don’t know yet if it holds, however, we

plan to use a similar approach in order to explore the
proof.

Proposition 2 Completeness
Slall CSlple A k¢ = v F pL<p

Recent results on containment undecidability give
hints that completeness could not be reached. On
the other hand, it is hard to evaluate the exact conse-
quence of using explicit node set constraints in qual-
ifiers, which constitutes an original approach. Any-
way, we expect to learn more when addressing the
completeness proof: to identify more precisely (4) the
combination of XPath features responsible for higher
computational complexity and (%) the sources of in-
completeness or undecidability.

Even though high computational complexity
means in practice low performances, this probably
may not be a problem for most of the containment
applications such as static analysis, because most of
the xpath expressions used in the real world seem to
be simple and small.

In parallel to this formal work, we started the de-
velopment of algorithms embedded in an experimen-
tal demonstrator, written in the python language
[9]. This prototype implements the inference to-
gether with the re-writing system presented in this
paper. We plan to release the demonstrator as soon
as the formal properties are established and their lim-
its clearly understood.

Last but not least, we believe the rewriting archi-
tecture could be completed with an XPath optimiza-
tion stage. This one can use rules dedicated to redun-
dancies elimination (e.g. a[b and b/c] — a[b/c]) or
qualifier decomposition (e.g. a[b/c] = a[b[c]], compu-
tationally more efficient). Moreover, the normaliza-
tion stage could use a real execution context includ-
ing schema information in order to exploit additional
equivalences. For instance, schema constraints may
permit to rewrite a/b into a/*, while this does not
hold in the general case.

Beside pure optimization, containment under
schema validity assumption can also be addressed
using 7 unchanged, provided that the normalization
stage is extended in order to exploit schema informa-
tion.

14

References

[1] Dan Olteanu and Holger Meuss and Tim Furche
and Francois Bry, “Symmetry in XPath”, tech-
nical report, October 2001, Computer Science
Institute, Munich, Germany.

Alin Deutsch and Val Tannen, ”Containment
of Regular Path FExpressions under Integrity
Constraints”, Knowledge Representation Meets
Databases, 2001.

[2]

[3] Frank Neven and Thomas Schwentick, ”XPath
containment in the presence of disjunction,
DTDs, and variables”, International Conference
on Database Theory, 2003.

[4] John E. Hopcroft and Rajeev Motwani and Jef-
frey D. Ullman, ”Introduction to Automata The-
ory, Languages, and Computation”, Addison
Wesley, Second Edition, 2000.

[5] Gerome Miklau and Dan Suciu, ”Containment
and Equivalence for an XPath Fragment (Ez-
tended Abstract)”, Symposium on Principles of
Databases Systems, 2002.

[6] XML Path Language (XPath) 2.0, W3C working
draft, 15 November, 2002.

[7] Phil Wadler, ”A formal semantics of patterns in
XSLT”, Markup Technologies, 1999.

[8] Phil Wadler”, ”Two semantics for XPath”,
http://www.cs.bell-labs.com/who/wadler/ top-
ics/xml.html, 1999.

[9] Guido van Rossum, The Python language home
page http://www.python.org .

Biography of Jean-Yves Vion-Dury Jean-Yves
holds an engineering degree from Conservatoire Na-
tional des Arts et Métiers (1993) and a Ph.D. in Com-
puter Science from Université Joseph Fourier (1999).

As an invited researcher, he recently joined the
WAM project at INRIA, in charge of the scientific
development of €}, a new transformation language
strongly based on XPath.

His previous research focused on the theoretical
and practical design of Circus-DTE, a specialized
programming language created around the paradigm
of typed structure transformation, applied to XML
document processing.

Jean-Yves joined the Xerox Research Center Eu-
rope (XRCE, Grenoble) in April 1995, as Ph.D. in-
tern working in partnership with the french national
research institute INRIA. He worked first on the
Olan project, designing tools, environment and in-
frastructure for distributed component programming
(language semantics, runtime architecture, compiler,
debugger) and then on the CLF architecture (CLF
stands for Coordination Language facilities). In April
1999, Jean-Yves joined the newly created DMTT
group to apply the result of his former research on
document transformation. Before joining Xerox re-
search and Technologies, he worked for years in the
industrial world, focusing on electrical engineering
and applied computer sciences.

Biography of Nabil Layaida Dr. Nabil Layaida
received a Ph.D. degree in computer science from uni-
versity of Grenoble in 1997. Since 1998, he is work-
ing as a research officer at INRIA (Institut National
de Recherche en Informatique et en Automatique).
He is managing the presentation services for multi-
media systems group within the WAM project. His
research interests are in the fields of interactive struc-
tured and multimedia document processing, adaptive
documents, multimedia applications for the mobile
devices, structure transformations, temporal schedul-
ing and synchronization and their applications on
the Web. He is also a member of the SYMM work-
ing group and co-author of SMIL 1.0 and SMIL 2.0
recommendations (Synchronized Multimedia Integra-
tion Language) of the World Wide Web Consortium.

15

—)
p1|p2 N
p/a:Nld]
a:zN

$v°

K(X

for $v in p; return p,
for $v in ., $w in Pz @

Il

Il

P12

a:Nlq|/D*
a:zN/a:x*

$v
A

return $w/p; @

(Sw & p1)

Figure 1: The reversed xpath computation

child <
parent <
following-sibling <
preceding-sibling <

Figure 2: Partial ordering of axes

n

<

descendant

ancestor
following
preceding

*

processing-instruction(), text 0
element()(), comment()

<
<
<

node()
node()
node()

Figure 3: Partial ordering of node tests

— self::node() (r54)
.. — parent::node() (rsp)
p1//p2 — pi/desc::node()/p2 | (rsc

p1/p>

N — child:N (
QN — attribute: N (T5e
ns:n — n[namespace::ns] (
if ¢ then p; else p» — pi[q] | p2[not ¢] (

pP1
Y4
P1
1
p1

Figure 4: Syntactic sugars (axis) (Ns)

— mnot (pC 1) (r6a)
==ps — (p1Cp2) and (p2 C p1) (Teb)
Cp2 — (p1tEp2) and not (p2 Ep1) (7ec)
p2 — p2Cp1 (7'6{1)
dp2 — p2LCp (T6e)
#p2 — mot (p1==p>) (Tor)

Figure 5: Syntactic sugars (qualifiers) (Ng)

D = pltrue]

p = ./p

L = p[false]
plai][g2] = plg: and g¢o]
pla] | ples] = plar or go
(p1lp2)/p = pi/plp/p
p/(p1lp2) = p/p1|p/p2

Figure 6: XPath equivalences

16

not (¢, and g»)
not (¢; or ¢o)

q and (g1 or ¢»)
q or (¢ and ¢o)

not not ¢ = q

not true = false

not false = true
true or p = true
true and p = p

false and p = false
false or p = p

¢q1 and ¢ = g2 and ¢
g1 or g2 = (2 Or ¢1

not q; or not ¢»
not ¢; and not ¢

(¢ and ¢1) or (g and ¢»)

(g or ¢1) and (q or ¢3)

Figure 7: Qualifier equivalences

(p1lp2)/p

p/(p1]p2)

(p1lp2)ld]

pla1 or go]

for $v in pi1|p2 return p
for $v in p; return p
| for $v in p; return p

for $v in p return p;|p>
for $v in p return p;
| for $v in p return p,°

(for $v in p; return p2)/p

for $v in p; return (p»

/p)

p/(for $v in p; return p;)

for $v in p/p;: return (p/p2)

141 dd

1

p1/p | p2/P
p/p1 | p/p2
pl[Q] | P2[Q]
pla1] | pla:]

Figure 8: N: distributing | and /

(p1/p2)la]

plg1 or go]

plg1][qe]

(for $v in p; return p>)[q]
for $v in p: return (p2[q])
a::N/p

Ap

p/ Ala]

$v/p

p/$v(q]

for $w in p return $v[qg][Sw]

L1l

14i4dd

p1/(p2[q])
pla1] | plg2]
plg1 and go]

a:: N[true]/p
Altrue]/p

Ala1][.//p]
$v[true]/p

Figure 9: Nesting qualifiers with N3

not not ¢ — q

not (¢g1 and ¢2) — (not ¢1) or (not ¢2)
not (g1 or ¢2) — (not ¢1) and (not ¢2)
gand (q or g2) — (gAq) or (¢Aq)
gor (g1 and ¢2) — (q or q1) and (q or q2)
(1 or g2) and ¢ — (g1 Ag) or (g2 Aq)

(@1 and g2) or ¢ — (q1 or g) and (g2 or q)
true and ¢ — q

true or ¢ — true

false and ¢ — false

false or ¢ — q

q and true - q

q or true — true

q and false — false

q or false - q

not true — false

not false — true

if p #p'[p"

p E (p1|p2) — (@PEp)or (pCp»)
(p1lp2) Ep — (p1 Ep) and (p2 Cp)
1Cp — true

pCp — true

(r2a)
T2b)
TZC)

(r2q)
(1r2e)
(r2f)
(r2g)

(r2n)

(72i)

Py

<
w
)

<
w
Gy

NN~ A~
<
w
Y

NN
<
w
Q

Figure 10: Conjunctive form for qualifiers (N3)

17

L/p

p/L

Llp

plL

Lla]

plfalse]

for $v in p return |
for $v in | return p

a # child,descendant
Al---(a:Nlgl/pZ 1)---]

n #n'
aun[--- (selfun'[ql/p L L)---]

N A R O
FERESS -

4

'_

(T4i)

(r45)

Figure 11: Detecting void paths (N)

desc-or-self:: N — desc:: N|self:: N

anc-or-self:: N — anc::N|self:: N

following:: N — anc-or-self:: x
/following-sibling:: x
/desc-or-self:: N

preceding:: N — anc-or-self:: x
/preceding-sibling:: x
/desc-or-self:: N

Tall
Ta12
Ta13

Tal4

Figure 12: Suppression of axes (A1)

Algl/a::Nq']

a # self,parent,ancestor
attribute:: Nl [ql]/a:: N2 [qz]
namespace:: N1[g1]/a:: Na[ga]

n2 # Ny
azng[q]/self::nz[qs]

p1/self::x[q]

11

L

p1[q]

Ta21

Ta22
Ta23

Ta24

Ta25

Figure 13: Detection of empty paths (Az)

p1/self::x[q]
Nal/ A lge]

AN = min(Ny, N»)
a:: Ny [q1]/self:: Na[go]

self::x[true]/p

desc:: x[true]/desc:: N[q]
anc:: x[true]/anc:: N[q]

11

D1 [Q]
Ag1]lgz]

a::Nq1][g2]

p
x/desc:: N[q]

parent::x/anc:: N|q]

Figure 14: axis simplification (Aj3)

then a:: Ny[g1]/a’:: Na[go]

if @ is rewrites to #
if @’ is parent
child,
attribute, self:: Na[go][a:: N1 [g1]] T41
namespace
descendant desc-or-self:: Na[qa][N1[q1]] T4o
; S;f’éjﬁi [as:Ni[q1])/parent:: No[gs] | 145
if @' is child
p-sibling:: N |f-sibling:: No
parent |ge1f::N2)gEq2][erent::J%1 [¢1]] T4
for $v in . return A /desc:: N
ancestor [g2][parent:: N1 [¢1][Q]] T45
Tos1 with @ = ($v C desc-or-self:: x)
Ta32 if o’ is descendant
a::Nl[ql]/chiId::N2[q2]
parent a:Ni[q]/ * /desc:: Na[gs] s
Ta33 for $v in . return A /desc:: N
ancestor [g=][ancestor:: Ny [¢1][Q]] T4z
Ta34 with @ = ($v C desc-or-self:: x)
Ta35 if a’ is ancestor
Ta36 child,
attribute [a:: N1[g1]]/ anc-or-self:: Na[go] T48
namespace
anc-or-self:: Na[go] |
descendant desc:: Na[go][desc:: Ny[q1]] 49
f;_s;blﬁﬁié [a:: N1[g1]]/ ancestor:: Na[go] T4q
if o’ is f-sibling,p-sibling
child, a:: N. [][_"'N
descendant 1 Nafgo]lal = Ni[] "4b
for $v in . return P[g][Q1]
with
a P = (a:: Na|self:: No|a:: N2[Q2]) | rae

Q1
Q2

a::Nl[ql]
($v C a:x)

18

Figure 15: Elimination of opposed axis (A4)

ai N[+ @ Nolal/p Z 1) -]
5 self:: Nolgl[pl/a= M- -] (ra)

AN = min(Ny, N)
a:Ny[---(self:: Na[g]/pZ L)---]
= ax=N[--]lglpl[---] (7q2)

Figure 16: Qualifier simplification (Q)

19

