
XPath Formal Semantics and Beyond: a Coq based
approach

Pierre Genev̀es1 and Jean-Yves Vion-Dury1,2

1 WAM Project, INRIA Rĥone-Alpes
2 Xerox Research Centre Europe

Abstract. XPath was introduced as the standard language for addressing parts
of XML documents, and has been widely adopted by practioners and theoreticaly
studied. We aim at building a logical framework for formal study and analysis
of XPath and have to face the combinatorial complexity of formal proofs caused
by XPath expressive power. We chose the Coq proof assistant and its powerful
inductive constructions to rigorously investigate XPath peculiarities. We focus in
this paper on a basic modeling of XPath syntax and semantics, and make two con-
tributions. First, we propose a new formal semantics, which is an interpretation
of paths as first order logic propositions that turned out to greatly simplify our
formal proofs. Second, we formally prove that this new interpretation is equiv-
alent to previously known XPath denotational semantics [20, 18], opening per-
spectives for more ambitious mathematical characterizations. We illustrate our
Coq based model through several examples and we develop a formal proof of a
simple yet significant XPath property that compare quite favorably to a former
informal proof proposed in [18].

1 Introduction

XML [4] is now becoming the de facto standard for both representing structured docu-
ments and exchanging information. This success impacts major parts of the computing
infrastructure such as the future world wide web, information systems, and databases.
XPath [6] was introduced by the W3C [16] for specifying node selection, matching con-
ditions, and for computing values from an XML document. XPath is part of other XML-
related standards such as the transformation language XSLT [5], the modeling language
XML Schema [12], the linking standard XLink [8] and the forthcoming XQuery [3]
database access language, that is triggering considerable attention from big industrial
players. Because of its fundamental role, we see XPath as a cornerstone of XML tech-
nologies.

Motivation. We aim at building a rigorous framework for formal study and analysis of
XPath. This paper focuses on a basic modeling of XPath data model, syntax and seman-
tics as a first step toward a more ambitious goal, which is to axiomatize and characterize
the containment and equivalence relations over XPath expressions. The first problem to
address is the combinatorial complexity of proofs caused by XPath structure (e.g. cases
analysis, structural inductions). The second problem is to handle incremental variations
(and extensions) of the language fragment we want to deal with while maintaining the

2 – May 31, 2004

established properties. These two difficulties are clearly in favor of using mechanized
proofs, but require a proof assistant offering powerful data structure modeling capa-
bilities and providing a specialized language for building complex and modular proof
tactics. We chose the Coq proof assistant [7] because of(i) its powerful inductive con-
structions,(ii) its type system and(iii) its tactics language. Another important point for
the authors was the availability of module abstractions (clearly in favor of large project
developments) and also of a very good documentation [2] that considerably eased enter-
ing Coq’s arcanes. Last but not least, Coq is currently a large and active research project
offering long term perspectives as well as a good support to a growing user community.
Usually, proof assistants allow enforcing and verifying known mathematical results or
proving simple but important algorithms. The authors expect from this exploratory work
an ambitious step toward offering a common framework to theoreticians and engineers
working around XML technologies. We consider XQuery as a potential target since it
comes with a very large and complex formal semantics [11] while being probably too
complex to support mathematical treatments without the help of a scalable and typed
proof assistant (for instance, proving a worthwhile weak type soundness for the query
language, or reasoning formally about normalization and optimization).

Contribution. As a first result, we propose a new formal semantics for the XPath lan-
guage, which is basically an interpretation of XPath expressions in first-order logic. One
of the main advantages of this semantics is that both paths and qualifiers get an unified
interpretation; thus the general complexity of proofs involving XPath interpretation is
greatly reduced. The other expected benefit is to abstract over the usual computational
vision and to focus on the intrinsic meaning of the language. Our second contribution is
a formal proof of the equivalence of semantics that enables further construction on top
of this simple logical interpretation.

Related Work.The first version of the XPath specification [6], published in 1999, de-
scribes the meanings of XPath constructs and operators in more than thirty pages of
english. A formal semantics of XPath was given in 2000 by Wadler in [20]. This de-
notational semantics inspired works on theoretical issues around XPath: rewriting [18],
query containment [19] and algorithmic complexity [15]. However, this semantics con-
veys a computational vision and has often been directly translated into poorly efficient
functional algorithms [15]. Several authors adopted simpler semantics, focusing on
boolean tests or tree patterns [13] thus missing the most innovative and core XPath
feature: node-set selection. Recent work on the forthcoming XPath 2.0 language for-
mally defined static and operational semantics [10]. While being able to deal with com-
plex typing issues raised by substantial evolution of the language specification, these
semantics are probably too complex for being directly used in useful manual proofs.

Works on XPath containment and equivalence problems identified and conjectured
complexity classes for several XPath fragments (see [17] for an overview). However,
most of these works rely on manual proofs-by-reduction that do not help for finding
sound and complete algorithms on a significant XPath subset. On the opposite, we aim
at building a logical and formal framework for studying XPath, and especially for in-
vestigating XPath containment in a constructive way.

May 31, 2004 – 3

Outline We first introduce XPath and its data model in section 2. Section 3 presents the
basics of XPath semantics: query results, axes and node tests. A denotational semantics
of paths inspired from established contributions is then described in section 4, which
also highlights its drawbacks for formal proofs. Section 5 introduces our new logical
semantics and illustrates the interest of its Coq modeling through the demonstration of
an XPath property. Before concluding, section 6 summarizes the formal proof of the
equivalence of both semantics, constructed using the Coq proof system.

2 XPath Syntax and Data Model

A tree document model.XPath considers an XML document as a tree with several
kinds of nodes (root, element, text, attribute, namespace, processing instruction, and
comment). The tree is built by a successful parsing of a well-formed XML document.
The tree contains only one root node, which has no parent, no attribute and no names-
pace node, but that may have any other kind of nodes as children. Only elements can
have children. Nodes are fully connected using the relation_ that maps a node to its
children, and the reflexive and transitive closure_∗ of this relation. Moreover, a total
ordering relation� between any two elements reflects the depth-first traversal order of
the tree. We implemented this document model in Coq as two separate modules “XN-
odes” and “XTree” that respectively define the types “Node” and “Tree” which we refer
to in this paper.

XPath expressions.In their simplest form XPath expressions look like “directory navi-
gation paths”. For example, the XPath expression

/book/chapter/section

navigates from the root of a document (designated by the leading slash “/”) through
the top-level “book” element to its “chapter” child elements and on to its “section”
child elements. The result of the evaluation of the entire expression is the set of all
the “section” elements that can be reached in this manner, returned in the order they
occurred in the document. At each step in the navigation the selected nodes for that step
can be filtered using qualifiers. A qualifier is a boolean expression between brackets
that can test path existence. So if we ask for

/book/chapter/section[citation]

then the result isall “section” elements that have at least one child element named “cita-
tion”. The situation becomes more interesting when combined with XPath’s capability
of searching along “axes” other than the shown “children of” axis. Indeed the above
XPath is a shorthand for

/child::book/child::chapter/child::section[child::citation]

where it is made explicit that eachpath stepis meant to search the “child” axis contain-
ing all children of the previous context node. If we instead asked for

/child::book/descendant::*[child::citation]

4 – May 31, 2004

then the last step selects nodes of any kind that are among the descendants of the top
element “book” and have a “citation” child element. Previous examples are allabso-
lute XPath expressions (since they involve a leading “/”). The general meaning of an
expression is defined relatively to a context node in the tree. Starting from a particu-
lar context node in the tree, every other nodes can be reached. This is because XPath
defines powerful navigational capabilities, including a full set of axes, as captured on
figure 1. For more informal details on the complete XPath language, the reader can refer
to the specification [6].

self
ancestor

descendant

pr
ec

ed
ing

following

following-sibling

preceding-sibling

child

parent

Fig. 1.Axes: partitions of document nodes from a particular context node.

Abstract syntax: a compositional fragment.For the remaining part of the paper, we
focus on a restricted but significant fragment of XPath, composed of all XPath axes.
The abstract syntax of the fragment is given on figure 2. In order to make the XPath
syntax fully compositional, two variants are included: the void path⊥ and the explicit
root node∧ (respectively proposed in [18] and [19]). An other extension concerning
qualifiers is the inclusion constraintp1 v p2 over set of nodes selected byp1 andp2.
First defined in [19], the authors believe that this feature brings useful expressive power
without increasing cost of formal treatment (however this will be verified along our on-
going work on path containment). Note that it turns the constructp1[p2] into a syntactic
sugar forp1[not (p2 v ⊥)]. Although the XPath fragment we consider already covers
a significant range of real world use cases, our intent is to extend it to cover the XPath
standard as much as possible.

May 31, 2004 – 5

Path p ::= p/p | p[q] | p p p | p ∩ p | (p) | a::N | ⊥ | ∧

Qualifier q ::= q and q | q or q | not q | p | p v p | true | false

Axis a ::= child | descendant| self | descendant-or-self
| following-sibling | following | parent| ancestor
| preceding-sibling| preceding| ancestor-or-self

NodeTest N ::= n | ∗ | text() | comment() | element()
| processing-instruction() | node()

Fig. 2.XPath Abstract Syntax.

Our syntactic modeling in Coq is directly inspired from the abstract syntax. A cross-
inductive set definition (see figure 3) models XPath expressions:⊥, ∧, a::N are path
atoms andtrue, false are qualifier atoms, whereas other operators are binary construc-
tors. The definition relies on the definitions of “Axis” and “NodeTest” which are simple
set enumerations.

Inductive XPath: Set:=
— void : XPath
— top : XPath
— union: XPath→ XPath→ XPath
— inter : XPath→ XPath→ XPath
— slash: XPath→ XPath→ XPath
— qualif : XPath→ XQualif → XPath
— step: Axis→ NodeTest→ XPath

with XQualif : Set:=
— not : XQualif → XQualif
— and : XQualif → XQualif → XQualif
— or : XQualif → XQualif → XQualif
— leq : XPath→ XPath→ XQualif
— true : XQualif
— false: XQualif.

Fig. 3.Set of all XPath expressions in Coq.

Paths inside qualifiers (asp2 in p1[p2]) are modeled through a syntaxic sugar:

Definition path(p : XPath) : XQualif := not (leq p void).

At this stage, XPath expressions can be instanciated using functional notation, for ex-
ample:

slash root (qualif (step child book) (path (step child chapter)))

6 – May 31, 2004

or even with the familiar infix notation:

∧/book[chapter]

made possible by Coq’s notation mechanism and definitions of operators associativity.
Although some syntactic properties can already be worked out, involving results of
XPath expressions requires further modeling. We formalize and model the interpretation
of XPath expressions in the next sections.

3 XPath Semantics: Basics

Result of an expression.The evaluation of an XPath expression returns a node-set: an
unordered collection of nodes without duplicates. We chose to model a node-set in Coq
as a custom list type (shown on figure 4) rather than a set. This is in order to cope
with the “position()” feature in qualifiers [6] and sequences of the forthcoming XPath
2.0 language [1]. Indeed, the “position()” feature requires an ordered representation of
selected nodes for filtering purposes. Moreover, XPath 2.0 handles node sequences (or-
dered collections of zero or more items, with possible duplicates) instead of node-sets.
Thus, our Coq modeling of node-sets presently uses a list together with an associated
predicate for forcing uniqueness of nodes in the node-set.

Inductive NodeSet: Set:=
— empty: NodeSet
— item: Node→ NodeSet→ NodeSet.

Fig. 4.Coq modeling of node-sets.

Axes and node tests.The path step (a::N) is the most basic XPath construct that allows
to navigate in the tree in order to retrieve a node-set. Its semantics relies on two func-
tionsf andT that respectively define the semantics of an axisa and a node testN . The
navigational semantics of axes can be pictured using the tree document model (see fig-
ure 1); and more formally defined using theparent/childrelation (as usual_+ means
__∗), and the irreflexive ordering relation�. The functionf retrieves a node-set
starting from a context nodex:

May 31, 2004 – 7

a f(a)x

self {x}
child {y|x _ y}
parent {y|y _ x}

descendant {y|x _+ y}
ancestor {y|y _+ x}

descendant-or-self {y|x _∗ y}
ancestor-or-self {y|y _∗ x}

following-sibling {y|y ∈ sibling(x) ∧ x � y}
preceding-sibling {y|y ∈ sibling(x) ∧ y � x}

preceding {y|y � x}
following {y|x � y}
attribute {y|x _ y ∧ is-attribute(y)}

namespace {y|x _ y ∧ is-namespace(y)}
with sibling(x)= {y|∃z z _ x ∧ z _ y}

The node test part of a step is useful to filter the nodes according to their kind. The
functionT performs the test by attempting to match a nodex with the node test N used
in the step, according to the table below. The matching depends on the axis used in the
step:

N a T (a, N, x)

n name(x)=n
∗ attribute is-attribute(x)
∗ namespace is-namespace(x)
∗ other is-element(x)

text() is-text(x)
comment() is-comment(x)

processing-instruction() is-pi(x)
element() is-element(x)

node() true

The functionsf andT are directly translated into Coq definitions that drive our
“XTree” document model. The composition off andT allows to define the interpreta-
tion of a path step, which is an essential aspect of path semantics.

4 Denotational Semantics of Paths and Qualifiers

A classic formal semantics of paths finds its origins in [20], [18] and [19]. A formal
semantics functionS computes the node-set selected by a pathp starting from a context
nodex in the tree:

8 – May 31, 2004

S : Path−→ Node−→ Set(Node)
SJ∧Kx = {x1 | x1 _∗ x ∧ root(x1)}
SJ⊥Kx = ∅
SJp1 p p2Kx = SJp1Kx ∪ SJp2Kx

SJp1 ∩ p2Kx = {x1 | x1 ∈ SJp1Kx ∧ x1 ∈ SJp2Kx}
SJp1/p2Kx = {x2 | x1 ∈ SJp1Kx ∧ x2 ∈ SJp2Kx1}
SJ(p)Kx = SJpKx

SJp[q]Kx = {x1 | x1 ∈ SJpKx ∧QJqKx1}
SJa::NKx = {x1 | x1 ∈ f(a)x ∧ T (a,N, x1)}

The interpretation of a qualified pathp[q] uses the dual formal semantics function
Q for qualifiers.Q returns the boolean evaluation of a qualifierq from a context nodex:

Q : Qualifier−→ Node−→ Boolean
QJtrueKx = true
QJfalseKx = false
QJq1 and q2Kx = QJq1Kx ∧QJq2Kx

QJq1 or q2Kx = QJq1Kx ∨QJq2Kx

QJpKx = QJnot (p v ⊥)Kx

QJ(q)Kx = QJqKx

QJnot qKx = ¬QJqKx

QJp1 v p2Kx = SJp1Kx ⊆ SJp2Kx

The implementation ofS in Coq requires updatable definitions of common set op-
erations (union, intersection, inclusion) over previously defined node-sets. More inter-
esting are the two XPath-specific constructsp1/p2 and p[q] that require an ordered
evaluation of subterms. Indeed, the node-set retrieval driven byp2 and the filter per-
formed byq respectively operate on the results ofp1 andp. This can be captured in Coq
via two higher order functions. These functions abstract over the context node used for
the evaluation ofp2 andq:

Fixpoint product(s : NodeSet) (fs : Node→ NodeSet) {struct s} : NodeSet:=
match s with
— empty⇒ empty
— item a s1⇒ union(fs a) (product s1 fs)
end.

Fixpoint filter (s : NodeSet) (fs : Node→ bool) {struct s} : NodeSet:=
match s with
— empty⇒ empty
— item a s1⇒ if fs a then item a(filter s1 fs) else filter s1 fs
end.

The denotational semantics can then be modeled as a fixpoint that returns the node-
set selected by a pathp from a context nodex in a treet as shown on figure 5.

May 31, 2004 – 9

Fixpoint semanS(t : Tree) (p : XPath)
(x : Node) {struct p} : NodeSet:=
match p with
— void⇒ empty
— top⇒ XTree.roots t x
— slash p1 p2⇒ product(semanS t p1 x) (semanS t p2)
— union p1 p2⇒ union(semanS t p1 x) (semanS t p2 x)
— inter p1 p2⇒ inter (semanS t p1 x) (semanS t p2 x)
— qualif p1 q2⇒ filter (semanS t p1 x) (semanQ t q2)
— step a n⇒ filter (f a x t) (test node t n)
end

with semanQ(t : Tree) (q : XQualif) (x : Node) {struct q} :
bool :=
match q with
— true⇒ true
— false⇒ false
— not q1⇒ if semanQ t q1 x then false else true
— and q1 q2⇒ if semanQ t q1 x then semanQ t q2 x else false
— or q1 q2⇒ if semanQ t q1 x then true else semanQ t q2 x
— leq p1 p2⇒ incl (semanS t p1 x) (semanS t p2 x)
end.

Fig. 5.XPath Denotational Semantics in Coq.

At this stage, XPath interpretation can be used for studying properties involving
query results. Consider for example the containment relation, which holds between two
XPath expressionsp1 andp2 when the set of nodes returned byp1 is included in the set
of nodes returned byp2, for all trees and context nodes. The containment relation can
be formally modeled as follows:

Variable t:Tree.
Variable x:Node.

Variable Sle: XPath→ XPath→ Prop.

Conjecture Slesound: forall (p1 p2: XPath),
Sle p1 p2→ incl (semanS t p1 x) (semanS t p2 x)=true.

Conjecture Slecomplete: forall (p1 p2: XPath),
incl (semanS t p1 x) (semanS t p2 x)=true→ Sle p1 p2.

The general path equivalence relation≡S , that holds between two paths that always
have the same interpretation, can then be defined:

Inductive Sequiv: XPath→ XPath→ Prop :=

10 – May 31, 2004

— seq: forall (p1 p2: XPath), Sle p1 p2→ Sle p2 p1→ Sequiv p1 p2.

Identifying path equivalence classes is of very first importance for simplifying gen-
eral formal treatment of XPath. The equivalence relation is particularly crucial for
XPath normalization and rewriting issues (see [18] for an application motivated by
streaming XML querying). In addition, both equivalence and containment relations are
currently of great interest for XML researchers notably because of their implications
for integrity constraints checking [9] and database query optimization [14]. Consider
the following basic example: if∀p : XPath, p|p ≡S p holds thenp|p can securely be
replaced byp for optimization purposes while preserving query semantics. Using the
Coq modeling, the proof ofp|p ≡S p relies on two set-theoretic lemma (idempotence
of set union and reflexivity of set inclusion):

Lemma opt : forall (p : XPath), Sequiv(union p p) p.
Proof.
intro;constructor; apply Slecomplete; simpl;rewrite union idem;apply incl reflexive.
Qed.

Now consider a more general XPath property, often named “qualifier flattening”,
that was first given in [18]. This property basically states that nested qualifiers can be
seen as paths:

∀p, p1, p2 : Path p[p1[p2]] ≡S p[p1/p2] (1)

This property can be formulated as follows:

Lemma flatten qualifs: forall (p p1 p2:XPath),
Sequiv(qualif p (path(qualif p1(path p2)))) (qualif p (path(slash p1 p2))).

The Coq modeling of the denotational semantics allows to prove this property. How-
ever, using the denotational semantics in proofs means dealing with combined node-set
computation and boolean evaluation. Indeed, the denotational semantics relies on node-
set construction for evaluating paths and boolean evaluation for interpreting qualifiers.
Subsequently, ad-hoc auxiliary lemma are required for characterizing these two differ-
ent computational visions, together with their compositional peculiarities. As a conse-
quence, a major drawback is that intrinsic complexity of proofs becomes hidden behind
numerous operational considerations. This causes rather long and complex proof terms.
Consider for example the proof of (1); it could begin with the following tactic applica-
tions:

intros; constructor; apply Slecomplete.
simpl.

This generates two subgoals that require to deal with mixed node-set construction and
boolean evaluation (see appendix A). In the next section, we present a new simple XPath
semantics designed to eliminate this computational overload.

May 31, 2004 – 11

5 A Relational Semantics in First-Order Logic

We propose to translate an XPath expressionp into a dyadic formula of the first order
logic (FOL). The semantics functionRp defines the interpretation of paths in the first
order logic.Rp(x, y) holds for all pairsx, y of nodes such thaty is accessed fromx
through the pathp:

Rp : Path−→ Node−→ Node−→ FOL

Rp[[∧]]yx = y _∗ x ∧ root(y)
Rp[[⊥]]yx = false
Rp[[p1 p p2]]yx = Rp[[p1]]yx ∨Rp[[p2]]yx
Rp[[p1 ∩ p2]]yx = Rp[[p1]]yx ∧Rp[[p2]]yx
Rp[[p1/p2]]yx = ∃z Rp[[p1]]zx ∧Rp[[p2]]yz
Rp[[(p)]]yx = Rp[[p]]yx
Rp[[p[q]]]yx = Rp[[p]]yx ∧Rq[[q]]y
Rp[[a::N]]yx = y ∈ f(a)x ∧ T (a,N, y)

The dual formal semantics functionRq translates qualifiers into monadic formulæ.
Rq(x) holds for all nodesx such that the qualifierq is true from the context nodex:

Rq : Qualifier−→ Node−→ FOL

Rq[[true]]x = true
Rq[[false]]x = false
Rq[[q1 and q2]]x = Rq[[q1]]x ∧Rq[[q2]]x
Rq[[q1 or q2]]x = Rq[[q1]]x ∨Rq[[q2]]x
Rq[[p]]x = Rq[[not (p v ⊥)]]x
Rq[[(q)]]x = Rq[[q]]x
Rq[[not q]]x = ¬Rq[[q]]x
Rq[[p1 v p2]]x = ∀z Rp[[p1]]zx ⇒ Rp[[p2]]zx

This semantics abstracts over the usual computation of node-sets. It gives an unified
interpretation of paths and qualifiers. This enables further studying and manipulatation
of XPath with an exclusive logical vision. The Coq implementation of this semantics,
shown on figure 6, basically translates an XPath expression into a logical proposition.
Capturing XPath semantics using Coq’s basic “Prop” sort greatly reduces the complex-
ity of proof terms. Indeed, dealing with set-handling peculiarities (such as “product”
or “filter”) is no more required. Proofs involving query results can be accomplished
by using built-in Coq’s tactics. For example, let us model the containment relation (as
“Rle”) and the path equivalence relations≡R (as “Requiv”) on top of this new logical
interpretation:

Variable Rle: XPath→ XPath→ Prop.

Conjecture Rlesound: forall (p1 p2: XPath),
Rle p1 p2→ (forall y:Node, Rp t p1 x y→ Rp t p2 x y).

12 – May 31, 2004

Fixpoint Rp(t : Tree) (p : XPath) (x y : Node) {struct p} : Prop :=
match p with
— void⇒ False
— top⇒ s in y (XTree.roots t x)=true
— union p1 p2⇒ Rp t p1 x y∨ Rp t p2 x y
— inter p1 p2⇒ Rp t p1 x y∧ Rp t p2 x y
— slash p1 p2⇒ exists z: Node, Rp t p1 x z∧ Rp t p2 z y
— qualif p q⇒ Rp t p x y∧ Rq t q y
— step a n⇒ (s in y (f a x t))=true∧ (test node t n y)=true
end

with Rq(t : Tree) (q : XQualif) (x : Node) {struct q} : Prop :=
match q with
— true⇒ True
— false⇒ False
— not q⇒¬ Rq t q x
— and q1 q2⇒ Rq t q1 x∧ Rq t q2 x
— or q1 q2⇒ Rq t q1 x∨ Rq t q2 x
— leq p1 p2⇒ forall z : Node, Rp t p1 x z→ Rp t p2 x z
end.

Fig. 6.XPath Logical Semantics in Coq.

Conjecture Rlecomplete: forall (p1 p2: XPath),
(forall y:Node, Rp t p1 x y→ Rp t p2 x y) → Rle p1 p2.

Inductive Requiv: XPath→ XPath→ Prop :=
— req: forall (p1 p2: XPath), Rle p1 p2→ Rle p2 p1→ Requiv p1 p2.

The “flattening qualifiers” property can now be expressed as follows:

∀p, p1, p2 : Path p[p1[p2]] ≡R p[p1/p2] (2)

As opposed to the lemma (1), the lemma (2) based on≡R can be proved with a few
applications of Coq’s built-in tactics only:

Lemma flatten qualifs2: forall (p p1 p2:XPath),
Requiv(qualif p (path(qualif p1(path p2)))) (qualif p (path(slash p1 p2))).
Proof.
intros; constructor; apply Rle complete; simpl; intros y H; elim H;
intro H0; split; try assumption; intro H2;apply H1; intros z H3; elim H3;
intros H4 H5; elim H5; intros H6 H7; [elim (H2 H6); exists z — elim (H2 H4)];
split; try assumption; intro H8;apply(H8 z);assumption.
Qed.

The reader will notice that the proof of (2) is even comparable in size with the
manualproof of (1), found in [18], that expands the denotational semantics:

May 31, 2004 – 13

SJp[p1[p2]]Kx = {x1|x1 ∈ SJpKx ∧QJp1[p2]Kx1}
= {x1|x1 ∈ SJpKx ∧ (SJp1[p2]Kx1 6= ∅)}
= {x1|x1 ∈ SJpKx ∧ ({x2|x2 ∈ SJp1Kx1 ∧ (SJp2Kx2 6= ∅)} 6= ∅)}
= {x1|x1 ∈ SJpKx ∧ ({x2|x2 ∈ SJp1Kx1 ∧ x3 ∈ SJp2Kx2} 6= ∅)}
= {x1|x1 ∈ SJpKx ∧ (SJp1/p2Kx1 6= ∅)}
= SJp[p1/p2]Kx.

To summarize, the Coq proof system and our modeling of XPath offer the major
advantages we are interested in:

– rigour of a mechanized inference system in a precisely defined logic framework;
– ability to tackle combinatorial issues by using tactic composition;
– ability to achieve “incremental proving” thanks to proof replaying and updating

facilities.

Incremental proving is convenient since it allows to handle the XPath language progres-
sively and to update the semantics accordingly. Last but not least, all these advantages
come at a low cost when using our logical semantics, which greatly simplifies proof
development.

6 Equivalence of Denotational and Logical Semantics

To ensure that the formal semantics functionRp really captures XPath semantics, we
built a formal proof with Coq that shows that denotational and logical semantics are
equivalent:

Proposition 1. Equivalence of semantics.∀p: Path,∀x, y: Node, y ∈ SJpKx ⇔ Rp[[p]]yx

The proof uses the modelings presented in sections 4 and 5. Proposition 1 is formulated
as follows:

Theorem sem equivalence:
forall (p : XPath) (x y : Node) , s in y (semanS t p x)=true↔ Rp t p x y.

Where “s in” simply tests the membership of a node in a given node-set. Since paths
are inductively defined, the proof naturally uses an induction onp. However, because
the definition of paths is cross-inductive with the definition of qualifiers (see figure 3),
a mutual induction scheme is used. It is required to prove property 1 for the inductive
casep[q], otherwise not possible without assuming the dual property for qualifiers. The
appropriate mutual induction scheme (XJ1) can be automatically built by Coq from the
definition of paths:

Scheme XJ1:= Induction for XPath Sort Prop
with XJ2:= Induction for XQualif Sort Prop.

14 – May 31, 2004

The dual property for qualifiers is defined:

Definition sem equivalencefor qualifs(q : XQualif) : Prop :=
forall x : Node, (semanQ env t q x)=true↔ Rq t q x.

The proof of proposition 1, whose skeleton is shown on figure 7, can then begin
by applying the mutual induction scheme onp. We attempted to build the proof in
a modular way, so that when XPath constructs are changed or added, proof parts of
unchanged constructs remain valid. To this end, several tactics named “SolveX” are
defined with the intent to deal with a particular subgoal of the proof. The main proof
body (see figure 7) consists in composing these tactics. Each tactic is applied in a way
that either completely solve a subgoal or does not modify it at all. This allows to con-
trol which parts of the proof require an update when the underlying definitions evolve.
Each tactic first attempts to match the goal it is intended to solve and the corresponding

Theorem sem equivalence:
forall (p : XPath) (x y : Node) , s in y (semanS t p x)=true↔ Rp t p x y.
Proof.
intro p.
pattern p in` ×.
apply XJ1 with semequivalencefor qualifs; intros; split;intros;

try solve void1;try solve void2;
try solve top1; try solve top2;
try solve union1; try solve union2;
try solve inter1; try solve inter2;
try solve product1; try solve product2;
try solve qualif1; try solve qualif2;
try solve step1; try solve step2;
try solve not1; try solve not2;
try solve and1; try solve and2;
try solve or1; try solve or2;
try solve leq1; try solve leq2;
try solve[simpl;auto];
try solve[simpl;reflexivity];
try solve[simpl in H;auto;discriminate];
try solve[simpl in H;auto].

Qed.

Fig. 7.Main body of the modular proof of semantics equivalence.

hypotheses. For example, the tactic named “Solveproduct1” (see figure 8) isolates the
proof of the first inductive case for the “product” construct, whereas the tactic named
“Solve product2” contains the proof of the reciprocal property. In each tactic, the vari-
able names used for matching purposes (e.g. strings after the “?”) in the proof con-
text directly correspond to the names that Coq would generate if the proof is manually
achieved step by step. Preserving compatibility of names is convenient for updating

May 31, 2004 – 15

Ltac solveproduct1:=
match goal with
— H1: s in ?y (semanS?t (slash?x ?x0) ?x1) = true,

H: (forall (gx0 gy: Node)(gt : Tree),
((s in gy (semanS gt?x gx0) = true) ↔ Rp gt?x gx0 gy)),

H0:(forall (hx hy: Node)(ht : Tree),
((s in hy (semanS ht?x0 hx) = true) ↔ Rp ht?x0 hx hy))

` Rp?t (slash?x ?x0) ?x1?y
⇒ simpl in` ×; simpl in H1;

assert(H2 := in product1 y(semanS t x x1) (semanS t x0) H1);
elim H2;intros x2 H3; elim H3; intros H3A H3B;exists x2;
elim (H x1 x2 t); intros HE1 HE2;
elim (H0 x2 y t); intros HF1 HF2;
split; [apply HE1;assumption —apply HF1;assumption]
end.

Fig. 8.A tactic for solving a specific subgoal.

proofs, as the proof script can simply be copied and pasted to and from the proof en-
gine. Tactics can use auxiliary lemma that characterize peculiarities of the denotational

Lemma in product1: forall (y : Node)(s : NodeSet)(f :Node→NodeSet),
s in y (product s f) = true→ exists z: Node, s in z s=true∧ s in y (f z) = true.
Proof.
induction s;
[intros; rewrite product empty in H; rewrite in sem1 in H; discriminate
— intros;simpl;cut ({s in y (product s f) = true} + {s in y (product s f) = false});

[intros HC; elim HC; intros HC1;
[elim (IHs f); intros;

[exists x; elim H0; intros; split;
[apply in sem5; assumption — assumption] —assumption]

— exists a; split; [apply in sem2
— eapply in Lunion;[apply H; assumption — assumption]]]

—apply in dec]].
Qed.

Fig. 9.Lemma for characterizing a peculiarity of the denotational semantics.

semantics. For example, the lemma “inproduct1”, shown on figure 9 is used by the tac-
tic “Solve product1” (figure 8). “in product1” basically states that when the result of a
path constructp1/p2 is not empty then at least one result node ofp1 is used for evaluat-
ing p2. This is proved using several trivial lemmas on node-sets pictured on figure 10.
Proposition 1 allows to securely take advantage of the logical semantics.

16 – May 31, 2004

Lemma product empty: forall f : Node→ NodeSet, product empty f= empty.
Lemma in sem1: forall a : Node, s in a empty= false.
Lemma in sem2: forall (a : Node) (s : NodeSet), s in a (item a s) = true.
Lemma in sem5: forall (a b : Node) (s : NodeSet), s in a s= true→ s in a (item b s) = true.
Lemma in Lunion: forall (a : Node) (s1 s2: NodeSet),
s in a (union s1 s2) = true→ s in a s2= false→ s in a s1= true.
Lemma in dec: forall (s : NodeSet) (a : Node), {s in a s= true} + {s in a s= false}.

Fig. 10.Trivial lemma on node-sets used by proof of “inproduct1”.

7 Conclusion

In this paper, we focused on a basic modeling of XPath syntax and formal semantics
for using the Coq proof system. We introduced a new formal semantics for XPath, that
has two main advantages: first, it unifies path and qualifier interpretations. Second, it
allows to focus on the intrinsic meaning of XPath from a pure logic point of view.
These advantages allow significant simplifications in formal proofs. In addition, we
formally proved that this new interpretation is equivalent to the previously known XPath
semantics.

Lessons learned.Modeling XPath within the Coq proof system has shown to be a good
choice for building a scalable logical framework around XPath. Indeed, Coq’s tactic
composition features are a realistic way to cope with combinatorial issues raised by
XPath expressions. Moreover, Coq provides facilities for incrementally updating proofs
when our XPath fragment evolves.

Future DirectionsWe plan to take part of this framework for studying longer and more
complex proofs around XPath open questions. Especially, our intent is to axiomatize the
containment relation over XPath expressions; and then to demonstrate the soundness
and possibly the completeness of the relation. This characterization will strongly rely
on the Coq modeling of our logical semantics. After defining the relation, we plan to
demonstrate the properties “Rlesound” and “Rlecomplete” presented as conjectures
in section 5. The next step is to progressively extend the XPath fragment to support
significant real world applications.

References

1. A. Berglund, S. Boag, D. Chamberlin, M. F. Fernández, M. Kay, J. Robie, and
J. Siḿeon. XML path language (XPath) 2.0, W3C working draft, August 2003.
http://www.w3.org/TR/2003/WD-xpath20-20030822.

2. Y. Bertot and P. Castéran.Coq’Art, chapter To appear. Springer-Verlag, 2004.
3. S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J. Robie, and J. Siméon.

XQuery 1.0: An XML query language, W3C working draft, November 2003.
http://www.w3.org/TR/xquery/.

4. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensi-
ble markup language (XML) 1.0 (third edition), W3C recommendation, February 2004.
http://www.w3.org/TR/2004/REC-xml-20040204/.

May 31, 2004 – 17

5. J. Clark. XSL transformations (XSLT) version 1.0, W3C recommendation, November 1999.
http://www.w3.org/TR/1999/REC-xslt-19991116.

6. J. Clark and S. DeRose. XML path language (XPath) version 1.0, W3C recommendation,
November 1999. http://www.w3.org/TR/1999/REC-xpath-19991116.

7. The coq proof assistant, 2003. http://coq.inria.fr.
8. S. DeRose, E. Maler, and D. Orchard. XML Linking Language (XLink) version 1.0, W3C

Recommendation, June 2001. http://www.w3.org/TR/xlink/.
9. A. Deutsch and V. Tannen. Containment and integrity constraints for xpath fragments. In

Knowledge Representation Meets Databases, 2001.
10. D. Draper, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys, J. Siméon, and

P. Wadler. XQuery 1.0 and XPath 2.0 formal semantics, W3C working draft, February 2004.
http://www.w3.org/TR/xquery-semantics/.

11. D. Draper, P. Fankhauser, M. F. Fernández, A. Malhotra, K. Rose, M. Rys, J. Siméon,
and P. Wadler. Xquery 1.0 and xpath 2.0 formal semantics, February 2004.
http://www.w3.org/TR/xquery-semantics/.

12. D. C. Fallside. XML Schema part 0: Primer, W3C recommendation, May 2001.
http://www.w3.org/TR/xmlschema-0/.

13. S. Flesca, F. Furfaro, and E. Masciari. Minimization of tree patterns queries. InProceedings
of the 29th VLDB Conf., pages 497–508, January 2000.

14. P. Genev̀es and J.-Y. Vion-Dury. Logic-based XPath optimization. InFirst International
Workshop on High Performance XML Processing, May 2004.

15. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath queries. In
Proc. 28th Int. Conf. on Very Large Data Bases (VLDB 2002), pages 95–106, Hong Kong,
China, 2002. Morgan Kaufmann.

16. MIT, ERCIM, and Keio. The World Wide Web Consortium (W3C), 1994.
http://www.w3.org.

17. F. Neven and T. Schwentick. XPath containment in the presence of disjunction, DTDs, and
variables. InProceedings of the 9th International Conference on Database Theory, pages
315–329. Springer-Verlag, 2002.

18. D. Olteanu, H. Meuss, T. Furche, and F. Bry. Symmetry in XPath. InProceedings of Seminar
on Rule Markup Techniques, no. 02061, Schloss Dagstuhl, Germany (7th February 2002),
2001.

19. J.-Y. Vion-Dury and N. Layäıda. Containment of XPath expressions: an inference and rewrit-
ing based approach. InExtreme Markup Languages, August 2003.

20. P. Wadler. Two semantics for XPath. http://www.research.avayalabs.com/user/wadler/
papers/xpath-semantics/xpath-semantics.pdf, January 2000.

A Denotational interpretations of paths and qualifiers mixed in a
proof.

2 subgoals

p : XPath
p1 : XPath
p2 : XPath
============================

incl
(filter (semanS t p x)

(fun x0 : Node =>

18 – May 31, 2004

if incl
(filter (semanS t p1 x0)

(fun x1 : Node =>
if incl (semanS t p2 x1) empty
then false
else true)) empty

then false
else true))

(filter (semanS t p x)
(fun x0 : Node =>

if incl (product (semanS env t p1 x0) (semanS env t p2))
empty

then false
else true)) = true

subgoal 2 is:
Sle (qualif p (path (slash p1 p2))) (qualif p (path (qualif p1 (path p2))))

