
An Export Architecture for a Multimedia Authoring
Environment

Jan Mikáč
INRIA RhôneAlpes

655 avenue de l'Europe
38334 Saint Ismier, France

+33 076 61 54 38

Jan.Mikac@inria.fr

Cécile Roisin
UPMF & INRIA RhôneAlpes

655 avenue de l'Europe
38334 Saint Ismier, France

+33 076 61 53 60

Cecile.Roisin@inria.fr

Bao Le Duc
Université Pierre et Marie Curie

15, Rue Ecole de Médecine
75006 Paris, France

+33 637 31 04 60

leducbao@gmail.com

ABSTRACT
In this paper, we propose an export architecture that provides a
clear separation of multimedia authoring services from publica-
tion services. We illustrate this architecture with the LimSee3
authoring tool and several standard publication formats:
Timesheets, SMIL, and XHTML.

Categories and Subject Descriptors
I.7 [Document and Text Processing]: Document Preparation —
Hypertext/hypermedia, Multi/mixed media, Standards

General Terms
Documentation, Experimentation, Standardization.

Keywords
Export, multimedia document, publishing format, SMIL,
Timesheets

1. INTRODUCTION
The rise of rich web applications in recent years brings many
challenges to researchers regarding multimedia authoring, pub-
lishing formats and multimedia document rendering. A multime-
dia authoring system dedicated to end-users aims at facilitating
multimedia documents creation. It is worth noting that multimedia
authoring is a complex process which demands users to specify
document content from different sources, together with their
spatial layout, their synchronization (temporal layout) and their
behavior on user interactions [2]. A number of available tools
support multimedia authoring, including commercial software
such as Adobe Flash Creative Suite 3, SwiSH, PowerPoint and
open source tools such as GRiNS [5] for SMIL, or Sprout for
Flash. These tools are usually tightly coupled with publishing
formats. Publishing formats allow one to express multimedia
documents under executable formats, possibly taking into account
player/system configuration. They can follow open standards such
as HTML (with Javascript), SVG, SMIL, XMT or proprietary
formats (usually binary formats) such as Flash (with ActionScript)

or PowerPoint. The rapid spread of rich web applications that now
cover various domains (leisure, education, trading, advertising, or
simply individual communication) together with the quasi-
permanent emergence of new multimedia technologies pave the
way to separate authoring services from publication formats.

In this paper we propose an architecture that enables such a sepa-
ration. Section 2 identifies the needs of an exportation service,
section 3 briefly presents the authoring context in which this work
was done, section 4 describes the exportation architecture and
section 5 illustrates the benefits gained through two experiences
of publication.

2. EXPORTATION NEEDS
The authoring services that are provided by authoring tools have
to be completed by a set of publishing services (also called
exportation services) to cope with the different publication
formats in which the users want their multimedia documents to be
accessed.

This approach brings up two main benefits :

• Better authoring services because they can better target
user needs.

• Independence of the authoring tool from the publication
formats.

This last benefit is very important because multimedia document
formats are continuously evolving, even those that are defined by
standard organizations such as W3C (SMIL, SVG, HTML) or
ISO/IEC (MPEG4). This independence ensures therefore a more
stable perspective for the document created with the authoring
tool.

It has also another interesting advantage for users: the separation
between authoring model and publication format allows them to
choose the output process adapted to each context where the mul-
timedia information has to be delivered. The choice can also be
driven by the kind of multimedia documents being produced. For
instance, lightly-synchronized documents can be exported to
XHTML+JavaScript in order to provide a wide access (only a
web browser is required) while a SMIL-based solution is required
when more complex scheduling is necessary.

3. THE LIMSEE3 AUTHORING TOOL
LimSee3 [7] is a generic tool (or platform) for editing multimedia
documents and as such it provides several general authoring
mechanisms. The underlying document model [3] is designed to
capture author's view of a multimedia document independently of
a particular presentation format or player.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

DocEng’08, September 16–19, 2008, Sao Paulo, Brazil.
Copyright 2008 ACM 978-1-60558-081-4/08/09...$5.00.

Figure 1. LimSee3 generic/specific architecture

On top of the generic platform, LimSee3 proposes some domain-
or application-specific enhancements that are designed to provide
more fluent authoring in some cases, but these enhancements are
naturally less generic. Figure 1 illustrates this idea of LimSee3
seen as a generic authoring platform on which specific tools can
be built. The development of specific tools is done thanks to a
close interaction with a group of teacher users [4].

For instance, two specific tools have been developed during our
collaboration with these users as a response to their needs:

• The slideshow creator allows users to build slideshows
in a simple and efficient way. It is based on an
dedicated document template which guides the user
through the authoring process and provides some
automation in the treatment. This specific tool was
designed to respond to the need for easy preparation of a
course material.

• The multimedia course builder is intended to be used
after a course, to create a fully synchronized multimedia
presentation out of the slideshow and the video and/or
audio tracks shot during the lesson, with the possibility
to provide additional annotations into the post-produced
document. This tool addresses the need for production
of on-line viewable course presentations.

Both tools were developed in collaboration with users, in a
participatory-design way. User feedback validated our approach
in that it proved that our two specific tools can be used as an
authoring chain to prepare and reuse course material. However, a
clear need for multiple presentation formats was also identified,
the choice of a delivery format depending namely on the targeted
audience. This need led us to develop a general mechanism for
exporting into various presentation formats, presented in the
following section.

4. ARCHITECTURE OF THE EXPORT
SERVICE
The exportation process sketched below must cover the following
objectives:

• Multiple targets, to cover user needs in publication and
access formats.

• Optimization of the resulting document.

• Efficiency in the development of export modules for
various formats.

• Extensibility, to cope with future formats.

This section is devoted to (1) the presentation of the exportation
architecture and (2) the intermediate export format we have
defined for that purpose.

4.1 Exportation Process
The exportation process can be illustrated with the case of
exporting documents from LimSee3 documents to the SMIL
format. As can be seen by comparing the document structure of
SMIL with the LimSee3 document structure [7], the transfor-
mation requires to fully resolve and reorganize the time and
spatial components (see Figure 2).

Figure 2. Transformation of LimSee3 document structure into
SMIL document structure

Several solutions have been studied, from a pure XSLT-based one
to a pure Java-oriented one. The first approach seems to be
straightforward as both the LimSee3 syntax and the targeted
publication formats are XML languages. However it has proven to
be complex and inefficient because the XSLT code is not relevant
for the required treatments such as time and spatial position
computations. Moreover it does not allow to easily capitalize and
share existing export services. Pure Java solutions benefit from
the power of a programming language but imply that all new
export development be done by a SAX/DOM developer. Finally,
the proposed architecture of exportation takes advantage of both
approaches: an intermediate format has been defined to convey all
the structures and formatting parameters that can be computed by
LimSee3 core modules; each targeted document format can be
produced with an XSLT transformation (or a Java module) as
shown in Figure 3. As will be discussed in conclusion, this
architecture can be applied for other interchange needs which are
not related to our LimSee3 authoring format. The important point
to notice is that the intermediate format allows the capitalization
of spatial and time computations of multimedia structures.

Figure 3. The proposed export architecture using an inter-
mediate format

4.2 Intermediate Export Format
An intermediate format document is a valid XML document
conforming to the following DTD:

http://ns.inria.fr/limsee3/intermediate/intermediate.dtd.

Elements describing the intermediate format are declared in the
http://ns.inria.fr/limsee3/intermediate namespace. The root elem-
ent is “document” which contains the following sections:

head

It contains document meta-data.

layout

This section describes a hierarchy of regions, organizing
the actual presentational space of the document. To ensure
target format agnosticism, each container corresponds to
one displayable object – in particular there is no notion of
region reuse as in SMIL.

timing

It describes the time-container hierarchy much in the way
the layout section does for space containers. The hier-
archy is a tree formed by three different kinds of time
containers: par (parallel-time container), seq (sequential-
time container), excl (exclusive-execution container) and
leaf container for actual media. The order of temporal
objects in a sequence is important.

references

This section is formed by a list of references. Each
reference links an object (uniquely determined by its
objectId) to a space container and a time container.

media

This last section lists the basic media contained in the
document; by linking abstract objects (represented by
their objectId) referenced in other sections to actual
media assets.

4.3 Intermediate Format Features
The overall objective of the intermediate format is to provide as
much data as possible to subsequent transformation agents, while
preserving all presentational semantics from the source document.

Therefore, an intermediate document would contain all statically
computable information, in order to limit computational needs of
subsequent agents. In fact, the intermediate format provides an
unfolding (or a projection) of a source document on five different
axis (meta-data, spatial layout, timing, internal dependencies,
external dependencies).

The example in Figure 4 shows that for instance region infor-
mation is utterly computed (all positioning attributes were
resolved to pixel values). The timing tree (i.e. time container hier-
archy) is produced, however some timing attributes cannot be
statically known (they depend on the actual duration of the audio
media) – players have to treat them dynamically.

We can notice that the intermediate format contains redundant or
unnecessary information (such as precise time sequencing of a
parallel time container). This is on purpose, since the transfor-
mation of a redundant document requires less special case
handling, less value computation, less data-structure browsing
than a non-redundant document.

This intermediate format aims at providing efficient export
services for multimedia documents. Even if it does not yet cover a
wide range of formats, it can be compared with formatting
formats for static documents like XSL-FO that can be processed
for the production of output formats such as ps, pdf, or rtf. Indeed,
like XSL-FO, our intermediate format provides a way to store
partial formatting information in a step-by-step formatting process
and therefore provides a way to share this low-level information
between several output processes. Instead of the format itself, our

work aims at promoting such an approach for multimedia
documents.

Figure 4. Example of source and intermediate documents

5. EXPERIENCING WITH THE EXPORT
SERVICE
Implementing transformation from the LimSee3 document format
into the intermediate format was straightforward, since every
piece of information needed by an intermediate document is
already present in the LimSee3 application, as part of some
authoring service. For instance, the spatial layout hierarchy is
used in LimSee3 to provide a static spatial view of the document,
and as such it relies on resolved attributes values (coordinates,
width, height,...). Thus, creating an intermediate document from a
LimSee3 one is not much more than gathering known data and
outputting it in an XML form.

We started creating transformations from the intermediary format
to a presentation format with SMIL, which is the W3C standard
for synchronized multimedia documents and which is probably
the closest formalism to the LimSee3 document model (in terms
of general approach to multimedia). In fact, transforming an inter-
mediate document into SMIL proved to be easy: it consists in
outputting the head, layout and timing sections in SMIL syntax,
while omitting some data (e.g. the resolved spatial attributes, not
needed by SMIL). One non trivial part is the on-the-fly resolution
of references to actual media assets.

The intermediate-to-SMIL transformation procedure was imple-
mented as a Java class and was extensively tested. Tests validated
our approach in that the resulting SMIL documents are valid and
are obtained in an efficient way. However, we were forced to
adopt a modification when exporting some media objects, to
ensure correct presentation behavior. It is a fact that the SMIL2
standard allows text objects, but does not rule on their formatting.
Therefore, available players (RealOne, Ambulant Player) handle
formatted text differently (e.g. RealOne defines a HTML-like
syntactic extension to SMIL to allow text to be presented in a
formatted way). This situation evolves with SMIL3, but no

general-public player is available for that new standard yet. Since
we intend to use SMIL as a presentation format only, we decided
to export all text objects as PNG images when exporting to SMIL.
This is currently the only way to ensure correct rendering
semantics on all SMIL players. With this last amendment, our
exporting approach becomes fully satisfactory.

The next targeted language is XHTML. While this language is not
primarily designed for multimedia presentations, it is not
forbidden either. We intend to benefit from the ubiquity of the
web and from the constant evolution of web browsers (as
compared to stagnant SMIL players). For documents requiring
few synchronization features (such as slideshow presentations)
this rendering format is clearly adapted. When more timing
control is necessary, the use of some Javascript code has to be
added. That is exactly what is proposed in the Timesheets speci-
fication [9] issued from SMIL3.0.

Here, the spatial structure of the intermediate document provides
the main structure of XHTML (body) with absolute positioning
(CSS). Time and interaction structures of the source documents
are translated into timesheets elements. The XHTML player
makes use of a Javascript scheduler for ensuring the correct
behavior of the document as illustrated in Figure 5.

Figure 5. Combining XHTML, CSS and Timesheets

Such a Javascript engine has been proposed by P. Vuorimaa [10].
Its current version (0.5) implements the scheduling of static
medias in a top-down manner: time containers handle displaying
of their children. With some minor enhancements, we were able
to experiment this XHTML+Timsheets+JavaScript engine
approach on actual multimedia documents containing one
continuous media and no user interaction.

Based on this work, we are currently implementing a more
complete scheduler, including in particular the management of
several continuous media (thanks to the VLC Mozilla plug-in)
and taking into account various user interactions.

These production chains are being experienced by users to
produce multimedia courses where the objective is to automate as
far as possible content production and publication. One result is
its use in the publication of a course in history on a publicly
accessible course platform [11].

6. CONCLUSION
The benefits of the proposed intermediate format are twofold: it
facilitates the deployment of authoring services independently
from rendering systems and it simplifies the adoption of new

technologies such as Timesheets because export features (basi-
cally transformation sheets) are easier to develop.

Moreover, as this intermediate format captures all the semantics
of documents presentation, it can be considered as a pivot format
between existing multimedia languages. The first application that
can be rapidly developed is the rendering of a SMIL document
inside a web browser: indeed, for the subset of SMIL relevant for
its rendering inside a browser (i.e. ignoring features like prefetch),
it is quite straightforward to produce the transformation from
SMIL to our interchange format (except for the animation part
that we have not yet implemented) and then apply the
transformation towards XHTML with Timesheets.

A future step in the use of this architecture will be to consider
more advanced publications needs such as those required for
rendering adapted multimedia content, taking into account user
needs or user context [1], [6].

7. ACKNOWLEDGMENTS
This work is supported by the Palette European project
(FP6-028038).

8. REFERENCES
[1] Almaoui, M. and Plataniotis, K., 2005. Scalable e-Learning

Multimedia Adaptation Architecture, M. Kamel and A.
Campilho (Eds.): ICIAR 2005, LNCS 3656, pages 191-198,
2005

[2] Bulterman, D. C. and Hardman, L. 2005. Structured
multimedia authoring. ACM Trans. Multimedia Comput.
Commun. Appl. 1, 1 (Feb. 2005), 89-109. DOI=
http://doi.acm.org/10.1145/1047936.1047943

[3] Deltour, R. and Roisin, C. 2006. The LimSee3 multimedia
authoring model. In Proceedings of the 2006 ACM
Symposium on Document Engineering (Amsterdam, The
Netherlands, October 10 - 13, 2006). DocEng '06. ACM,
New York, NY, 173-175. DOI=
http://doi.acm.org/10.1145/1166160.1166203

[4] Guerraz, A., Roisin, C., Mikáč, J., Deltour, R. 2007.
Multimedia Authoring for Communities of Teachers. In
International Journal of Web-Based Learning and Teaching
Technologies, 2, 3 (Jul. 2007), 1-18.

[5] http://www.oratrix.com/GRiNS/

[6] Lemlouma, T. and Layaïda, N. 2005. Content interaction and
formatting for mobile devices. In Proceedings of the 2005
ACM Symposium on Document Engineering (Bristol, United
Kingdom, November 02 - 04, 2005). DocEng '05. ACM,
New York, NY, 98-100. DOI=
http://doi.acm.org/10.1145/1096601.1096627

[7] http://limsee3.gforge.inria.fr/public-site/

[8] Mikáč, J., Roisin, C., Deltour, R. LimSee3 Document Model
v1.3, http://limsee3.gforge.inria.fr/public-site/docs/LimSee3-
document-model.html

[9] Vuorimaa P., Bulterman, D. SMIL 3.0 External Timing,
W3C Working Draft 13 July 2007, http://www.w3.org/
TR/2007/WD-SMIL3-20070713/smil-timesheets.html.

[10] Vuorimaa P. Timesheets JavaScript Engine V.0.5,
http://www.tml.tkk.fi/~pv/timesheets/

[11] http://62.212.103.221/cours_eprep/Src_186_Laguerrede1914
-1918e/Laguerrede1914-1918e.zip, June 2008.

	1. INTRODUCTION
	2. EXPORTATION NEEDS
	3. THE LIMSEE3 AUTHORING TOOL
	4. ARCHITECTURE OF THE EXPORT SERVICE
	4.1 Exportation Process
	4.2 Intermediate Export Format
	4.3 Intermediate Format Features

	5. EXPERIENCING WITH THE EXPORT SERVICE
	6. CONCLUSION
	7. ACKNOWLEDGMENTS
	8. REFERENCES

