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Abstract: We present an algorithm to solve XPath decision problems under
regular tree type constraints and show its use to statically type-check XPath
queries. To this end, we prove the decidability of a logic with converse for finite
ordered trees whose time complexity is a simple exponential of the size of a
formula. The logic corresponds to the alternation free modal µ-calculus without
greatest fixpoint, restricted to finite trees, and where formulas are cycle-free.

Our proof method is based on two auxiliary results. First, XML regular tree
types and XPath expressions have a linear translation to cycle-free formulas.
Second, the least and greatest fixpoints are equivalent for finite trees, hence the
logic is closed under negation.

Building on these results, we describe a practical, effective system for solving
the satisfiability of a formula. The system has been experimented with some
decision problems such as XPath emptiness, containment, overlap, and cover-
age, with or without type constraints. The benefit of the approach is that our
system can be effectively used in static analyzers for programming languages
manipulating both XPath expressions and XML type annotations (as input and
output types).

Key-words: Mu-calculus, satisfiability, trees, XPath, queries, XML, types,
regular tree grammars

An extended abstract of this work was presented at the ACM Conference on Program-
ming Language Design and Implementation (PLDI), 2007 [21]. Extensions included in this
article notably comprise proof sketches, crucial implementation techniques for building a
satisfiability-testing algorithm which performs well in practice, a detailed description of the
algorithm, and formal descriptions and explanations about an important property of the logic:
cycle-freeness for formulas.
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Résumé : Pas de résumé
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Efficient Static Analysis of XML Paths and Types 3

1 Introduction

This work is motivated by the need of efficient type checkers for XML-based
programming languages where XML types and XPath queries are used as first
class language constructs. In such settings, XPath decision problems in the pres-
ence of XML types such as DTDs or XML Schemas arise naturally. Examples
of such decision problems include emptiness test (whether an expression ever
selects nodes), containment (whether the results of an expression are always
included in the results of another one), overlap (whether two expressions select
common nodes), and coverage (whether nodes selected by an expression are al-
ways contained in the union of the results selected by several other expressions).

XPath decision problems are not trivial in that they need to be checked on a
possibly infinite quantification over a set of trees. Another difficulty arises from
the combination of upward and downward navigation on trees with recursion
[46].

The most basic decision problem for XPath is the emptiness test of an ex-
pression [3]. This test is important for optimization of host languages imple-
mentations: for instance, if one can decide at compile time that a query result
is empty then subsequent bound computations can be ignored. Another ba-
sic decision problem is the XPath equivalence problem: whether or not two
queries always return the same result. It is important for reformulation and
optimization of an expression [22] , which aim at enforcing operational proper-
ties while preserving semantic equivalence [32]. The most essential problem for
type-checking is XPath containment. It is required for the control-flow analysis
of XSLT [36], for checking integrity constraints [13], and for XML security [14].

The complexity of XPath decision problems heavily depends on the language
features. Previous works [42, 3] showed that including general comparisons of
data values from an infinite domain may lead to undecidability. Therefore, we
focus on a XPath fragment which covers all features except counting [9] and
data values.

In our approach to solve XPath decision problems, two issues need to be
addressed. First, we identify the most appropriate logic with sufficient expres-
siveness to capture both regular tree types and our XPath fragment. Second, we
solve efficiently the satisfiability problem which allows to test if a given formula
of the logic admits a satisfying finite tree.

The essence of our results lives in a sub-logic of the alternation free modal
µ-calculus (AFMC) with converse, some syntactic restrictions on formulas, with-
out greatest fixpoint, and whose models are finite trees. We prove that XPath
expressions and regular tree type formulas conform to these syntactic restric-
tions. Boolean closure is the key property for solving the containment (a logical
implication). In order to obtain closure under negation, we prove that the least
and greatest fixpoint operators collapse in a single fixpoint operator. Surpris-
ingly, the translations of XML regular tree types and a large XPath fragment
does not increase complexity since they are linear in the size of the correspond-
ing formulas in the logic. The combination of these ingredients lead to our main
result: a satisfiability algorithm for a logic for finite trees whose time complexity
is a simple exponential of the size of a formula.

The decision procedure has been implemented in a system for solving XML
decision problems such as XPath emptiness, containment, overlap, and coverage,
with or without XML type constraints. The system can be used as a component
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4 Genevès, Layäıda & Schmitt

of static analyzers for programming languages manipulating XPath expressions
and XML type annotations for both input and output.

2 Outline

The paper is organized as follows. We first present our data model, trees with
focus, and our logic in §3 and §4. We next present XPath and its translation
in our logic in §5. Our satisfiability algorithm is introduced and proven correct
in §6, and a few details of the implementation are discussed in §7. Applications
for type checking and some experimental results are described in §8. We study
related work in §9 and conclude in §10.

3 Trees with Focus

In order to represent XML trees that are easy to navigate, we use focused trees,
inspired by Huet’s Zipper data structure [27]. Focused trees not only describe a
tree but also its context: its previous siblings and its parent, including its parent
context recursively. Exploring such a structure has the advantage to preserve
all information, which is quite useful when considering languages such as XPath
that allow forward and backward axes of navigation.

Formally, we assume an alphabet Σ of labels, ranged over by σ.

t ::= σ[tl ] tree
tl ::= list of trees

ε empty list
| t :: tl cons cell

c ::= context
(tl ,Top, tl) root of the tree

| (tl , c[σ], tl) context node
f ::= (t, c) focused tree

A focused tree (t, c) is a pair consisting of a tree t and its context c. The
context (tl , c[σ], tl) comprises three components: a list of trees at the left of the
current tree in reverse order (the first element of the list is the tree immediately
to the left of the current tree), the context above the tree, and a list of trees
at the right of the current tree. The context above the tree may be Top if the
current tree is at the root, otherwise it is of the form c[σ] where σ is the label
of the enclosing element and c is the context in which the enclosing element
occurs.

In order to deal with decision problems such as containment, we need to
represent in a focused tree the place where the evaluation of a request was
started. To this end, we use a start mark, often simply called “mark” in the
following. We thus consider focused trees where a single tree or a single context
node is marked, as in σs[tl ] or (tl , c[σs], tl). When the presence of the mark
is unknown, we write it as σ◦[tl ]. We write F for the set of finite focused trees
containing a single mark. The name of a focused tree is defined as nm(σ◦[tl ], c) =
σ.

We now describe how to navigate focused trees, in binary style. There are
four directions, or modalities, that can be followed: for a focused tree f , f 〈1〉
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Efficient Static Analysis of XML Paths and Types 5

Lµ 3 ϕ,ψ ::= formula
> true

| σ | ¬σ atomic prop (negated)
| s | ¬s start prop (negated)
| X variable
| ϕ ∨ ψ disjunction
| ϕ ∧ ψ conjunction
| 〈a〉ϕ | ¬ 〈a〉> existential (negated)
| µXi = ϕi in ψ least n-ary fixpoint
| νXi = ϕi in ψ greatest n-ary fixpoint

Figure 1: Logic formulas

changes the focus to the children of the current tree, f 〈2〉 changes the focus to
the next sibling of the current tree, f

〈
1
〉

changes the focus to the parent of the
tree if the current tree is a leftmost sibling, and f

〈
2
〉

changes the focus to the
previous sibling.

Formally, we have:

(σ◦[t :: tl ], c) 〈1〉 def= (t, (ε, c[σ◦], tl))

(t, (tl l, c[σ◦], t′ :: tlr)) 〈2〉
def= (t′, (t :: tl l, c[σ◦], tlr))

(t, (ε, c[σ◦], tl))
〈
1
〉 def= (σ◦[t :: tl ], c)

(t′, (t :: tl l, c[σ◦], tlr))
〈
2
〉 def= (t, (tl l, c[σ◦], t′ :: tlr))

When the focused tree does not have the required shape, these operations
are not defined.

4 The Logic

We introduce in this section the logic to which we translate XPath expressions
and XML regular tree types. This logic a sub-logic of the alternation free modal
µ-calculus with converse. We also introduce a restriction on the formulas we
consider and give an interpretation of formulas as sets of finite focused trees.
We finally show that the logic has a single fixpoint for these models and that it
is closed under negation.

In the following, we use an overline bar to denote tuples. For instance, we
write Xi = ϕi for (X1 = ϕ1;X2 = ϕ2; . . . ;Xn = ϕn). Tuples of variables, such
as Xi, are often identified to sets.

In the following definitions, a ∈ {1, 2, 1, 2} are programs and atomic propo-
sitions σ correspond to labels from Σ. We also assume that a = a. Formulas
defined in Figure 1 include the truth predicate, atomic propositions (denoting
the name of the tree in focus), start propositions (denoting the presence of the
start mark), disjunction and conjunction of formulas, formulas under an exis-
tential (denoting the existence a subtree satisfying the sub-formula), and least
and greatest n-ary fixpoints. We chose to include a n-ary version of fixpoints
because regular types are often defined as a set of mutually recursive definitions,
making their translation in our logic more direct and succinct. In the following
we write “µX.ϕ” for “µX = ϕ in ϕ”.
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6 Genevès, Layäıda & Schmitt

J>KV
def= F JσKV

def= {f | nm(f) = σ}

JXKV
def= V (X) J¬σKV

def= {f | nm(f) 6= σ}

Jϕ ∨ ψKV
def= JϕKV ∪ JψKV JsKV

def=
{
f | f = (σs[tl ], c)

}
Jϕ ∧ ψKV

def= JϕKV ∩ JψKV J¬sKV
def= {f | f = (σ[tl ], c)}

J〈a〉ϕKV
def= {f 〈a〉 | f ∈ JϕKV ∧ f 〈a〉 defined}

J¬ 〈a〉>KV
def= {f | f 〈a〉 undefined}

JµXi = ϕi in ψKV
def= let Ti =

(⋂{
Ti ⊆ F | JϕiKV [Ti/Xi]

⊆ Ti
})

i

in JψK
V [Ti/Xi]

JνXi = ϕi in ψKV
def= let Ti =

(⋃{
Ti ⊆ F | Ti ⊆ JϕiKV [Ti/Xi]

})
i

in JψK
V [Ti/Xi]

Figure 2: Interpretation of formulas

We define in Figure 2 an interpretation of our formulas as subsets of F , the
set of finite focused trees with a single start mark. The interpretation of the
n-ary fixpoints first compute the smallest or largest interpretation for each ϕi,
bind the resulting sets Ti to the variables Xi, then returns the interpretation of
ψ.

To illustrate the interpretation of fixpoints, consider the two following formu-
las ϕ = µX. 〈1〉X∨

〈
1
〉
X and ψ = νX. 〈1〉X∨

〈
1
〉
X, which respectively expand

to µX = 〈1〉X ∨
〈
1
〉
X in 〈1〉X ∨

〈
1
〉
X and νX = 〈1〉X ∨

〈
1
〉
X in 〈1〉X ∨〈

1
〉
X.
The interpretation of ϕ is straightforward: associating the empty set to X,

we have
J〈1〉X ∨

〈
1
〉
XK∅/X ⊆ ∅

thus JϕK = ∅. Intuitively, there is no base case in the formula, hence the smallest
fixpoint is the empty one.

The interpretation of ψ is more complex: it is the set of every focused tree
with at least two nodes, one being the parent of the other. We now show that
the interpretation of ψ includes the focused tree f1 = (a[b[ε]], T ), where T is
the top-level context (ε,Top, ε). We do not specify the position of the mark as
it is not used in the query: it could be anywhere. Let f2 = f1 〈1〉, that is the
tree (b[ε], (ε, T [a], ε)). We thus have f2

〈
1
〉

= f1. Finally, let V be the mapping
[{f1; f2}/X]. We compute as follow:

J〈1〉X ∨
〈
1
〉
XKV

= J〈1〉XKV ∪ J
〈
1
〉
XKV

=
{
f
〈
1
〉
| f ∈ JXKV ∧ f

〈
1
〉

defined
}
∪ {f 〈1〉 | f ∈ JXKV ∧ f 〈1〉 defined}

= {f1} ∪ {f2}
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Efficient Static Analysis of XML Paths and Types 7

thus V (X) ⊆ J〈1〉X ∨
〈
1
〉
XKV , hence by definition of the largest fixpoint, we

have f1 ∈ JψK∅.
We now restrict the set of valid formulas to cycle-free formulas. To define

them, we first need to define the notion of a path in a formula. Given a formula
ϕ, the set of its paths P(ϕ) is the set of sequential chains of modalities contained
in the formula. We write ε for the empty path.

P(〈a〉ϕ) = {〈a〉 p | p ∈ P(ϕ)}
P(ϕ ∨ ψ) = P(ϕ) ∪ P(ψ)
P(ϕ ∧ ψ) = P(ϕ) ∪ P(ψ)
P(ϕ) = ε otherwise

A modality cycle in a path is a sub-sequence of the form 〈a〉 〈a〉. We define
cycle-free formulas as formulas that have a bound on the number of modality
cycles in every path, independently of the number of unfolding of their fixpoints.
For instance, the formula “µX = 〈1〉 (> ∨

〈
1
〉
X) in X” is not cycle free: for any

integer n, there is an unfolding of the formula such that a path with n modality
cycles exists. Similarly, the formulas ϕ and ψ above are also not cycle free.
On the other hand, the formula “µX = 〈1〉 (X ∨ Y ), Y =

〈
1
〉

(Y ∨ >) in X” is
cycle free: there is at most one modality cycle for each path.

Cycle-free formulas have a very interesting property, which we now describe.
To test whether a tree satisfies a formula, one may define a straightforward
inductive relation between trees and formulas that only holds when the root of
the tree satisfies the formula, unfolding fixpoints if necessary. Given a tree, if a
formula ϕ is cycle free, then every node of the tree will be tested a finite number
of time against any given subformula of ϕ. The intuition behind this property,
which holds a central role in the proof of lemma 4.2, is the following. If a tree
node is tested an infinite number of times against a subformula, then there
must be a cycle in the navigation in the tree, corresponding to some modalities
occurring in the subformula, between one occurrence of the test and the next
one. As we consider trees, the cycle implies there is a modality cycle in the
formula (as unbalanced cycles of the form 〈1〉 〈2〉

〈
1
〉 〈

2
〉

cannot occur). Hence
the number of modality cycles in any expansion of ϕ is unbounded, thus the
formula is not cycle free.

Figure 3 gives an inductive relation that decides whether a formula is cycle
free. In the judgement ∆ ‖ Γ `RI ϕ of Figure 3, ∆ is an environment binding
some recursion variables to their formulas, Γ binds variables to modalities, R is
a set of variables that have already been expanded (see below), and I is a set
of variables already checked.

The environment Γ used to derive the judgement consists of bindings from
variables (from enclosing fixpoint operators) to modalities. A modality may be

(no information is known about the variable), 〈a〉 (the last modality taken
〈a〉 was consistent), or ⊥ (a cycle has been detected). A formula is not cycle
free if an occurrence of a variable under a fixpoint operator is either not under
a modality (in this case Γ(X) = ), or is under a cycle (Γ(X) = ⊥). Cycle
detection uses an auxiliary operator to detect modality cycles:

ΓC 〈a〉 def= {X : (Γ(X)C 〈a〉)}

RR n° 6590
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8 Genevès, Layäıda & Schmitt

ϕ = >, σ,¬σ,s, or ¬s
∆ ‖ Γ `RI ϕ

∆ ‖ Γ `RI ϕ ∆ ‖ Γ `RI ψ
∆ ‖ Γ `RI ϕ ∨ ψ

∆ ‖ Γ `RI ϕ ∆ ‖ Γ `RI ψ
∆ ‖ Γ `RI ϕ ∧ ψ ∆ ‖ Γ `RI ¬ 〈a〉>

∆ ‖ (ΓC 〈a〉) `RI ϕ
∆ ‖ Γ `RI 〈a〉ϕ

∀Xj ∈ Xi.
(

(∆ +Xi : ϕi) ‖ (Γ +Xi : ) `R\Xi
I\Xi

ϕj

)
∆ ‖ Γ `R\Xi

I∪Xi
ψ

∆ ‖ Γ `RI µXi = ϕi in ψ

∀Xj ∈ Xi.
(

(∆ +Xi : ϕi) ‖ (Γ +Xi : ) `R\Xi
I\Xi

ϕj

)
∆ ‖ Γ `R\Xi

I∪Xi
ψ

∆ ‖ Γ `RI νXi = ϕi in ψ

NoRec
X ∈ R Γ(X) = 〈a〉

∆ ‖ Γ `RI X

Rec

X 6∈ R ∆ ‖ Γ `R∪{X}I ∆(X)

∆ ‖ Γ `RI X

Ign
X ∈ I

∆ ‖ Γ `RI X

Figure 3: Cycle-free formulas

where
·C · 〈1〉 〈2〉

〈
1
〉 〈

2
〉

〈1〉 〈2〉
〈
1
〉 〈

2
〉

〈1〉 〈1〉 〈2〉 ⊥
〈
2
〉

〈2〉 〈1〉 〈2〉
〈
1
〉
⊥〈

1
〉
⊥ 〈2〉

〈
1
〉 〈

2
〉〈

2
〉
〈1〉 ⊥

〈
1
〉 〈

2
〉

⊥ ⊥ ⊥ ⊥ ⊥

To check that mutually recursive formulas are cycle-free, we proceed the
following way. When a mutually recursive formula is encountered, for instance
µXi = ϕi in ψ, we check every recursive binding. Because of mutual recursion,
we cannot check formulas independently and we need to expand a variable the
first time it is encountered (rule Rec). However there is no need to expand
it a second time (rule NoRec). When checking ψ, as the formula bound to
the enclosing recursion have been checked to be cycle free, there is no need to
further check these variables (rule Ign). To account for shadowing of variables,
we make sure that newly bound recursion variables are removed from I and R
when checking a recursion. One may easily prove that if ∆ ‖ Γ `RI ϕ holds, then
I ∩R = ∅.

This relation decides whether a formula is cycle free because, if it is not,
there must be a recursive binding of Xi to ϕi such that ϕi{ϕi/Xi}{ϕj/Xj} ex-
hibits a modality cycle above Xi, where the Xj are recursion variables being
defined (either in the recursion defining Xi or in an enclosing recursion defi-
nition). Cycles are thus detected unfolding every recursive definition once in
every formula..
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Efficient Static Analysis of XML Paths and Types 9

Note that our definition of cycle free formulas is strict: a formula such as
µX. 〈1〉

〈
1
〉
X in > contains a cycle even though the variable on which the cycle

occurs never needs to be expanded.
We are now ready to show a first result: in the finite focused-tree interpre-

tation, the least and greatest fixpoints coincide for cycle-free formulas. To this
end, we prove a stronger result that states that a given focused tree is in the
interpretation of a formula if it is in the interpretation of a finite unfolding of
the formula. In the base case, we use the formula σ ∧ ¬σ as “false”.

Definition 4.1 (Finite unfolding) The finite unfolding of a formula ϕ is the
set unf (ϕ) inductively defined as

unf (ϕ) def= {ϕ} for ϕ = >, σ,¬σ,s,¬s, X,¬ 〈a〉>

unf (ϕ ∨ ψ) def= {ϕ′ ∨ ψ′ | ϕ′ ∈ unf (ϕ), ψ′ ∈ unf (ψ)}

unf (ϕ ∧ ψ) def= {ϕ′ ∧ ψ′ | ϕ′ ∈ unf (ϕ), ψ′ ∈ unf (ψ)}

unf (〈a〉ϕ) def= {〈a〉ϕ′ | ϕ′ ∈ unf (ϕ)}

unf (µXi = ϕi in ψ) def= unf (ψ{µXi=ϕi in ϕi/Xi}) ∪ {σ ∧ ¬σ}

unf (νXi = ϕi in ψ) def= unf (ψ{νXi=ϕi in ϕi/Xi}) ∪ {σ ∧ ¬σ}

Lemma 4.2 Let ϕ a cycle-free formula, then JϕKV = Junf (ϕ)KV .

The intuition why this lemma holds is the following. Given a tree satisfying
ϕ, we deduce from the hypothesis that ϕ is cycle free the fact that every node
of the tree will be tested a finite number of times against every subformula
of ϕ. As the tree and the number of subformulas are finite, the satisfaction
derivation is finite hence only a finite number of unfolding is necessary to prove
that the tree satisfies the formula. As least and greatest fixpoints coincide when
only a finite number of unfolding is required, this is sufficient to show that
they collapse. Note that this would not hold if infinite trees were allowed: the
formula µX. 〈1〉X is cycle free, but its interpretation is empty, whereas the
interpretation of νX. 〈1〉X includes every tree with an infinite branch of 〈1〉
children.

We now illustrate why formulas need to be cycle free for the fixpoints to
collapse. Consider the formula µX. 〈1〉

〈
1
〉
X. Its interpretation is empty. The

interpretation of νX. 〈1〉
〈
1
〉
X however contains every focused tree that has one

〈1〉 child.
Proof: [sketch of Lemma 4.2] Let f in JϕKV , we show that it is in Junf (ϕ)KV .
As recursive definitions are never negated, the converse is immediate.

As hinted above, the result is a consequence of the fact that a sub-formula is
never confronted twice to the same node of f as there is no cycle in the formula.
It is thus possible to annotate occurrences of ν and µ with the direction the
formula is exploring for each variable, as in Figure 3, and prove the result by
induction on the size of f in this direction.

First, we associate each recursion variable in every µ and ν of the initial
formula with a unique identifier. (From now on, we do not distinguish between
smallest and largest fixed points, as we handle them identically.) For every
recursive formula µXi = ϕi in ψ, we annotate every modality 〈a〉 ξ in every
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10 Genevès, Layäıda & Schmitt

ϕj where Xi is free in ξ with the variable Xi. Note that modalities may be
annotated with more than one variable in case of nested recursions.

We then unfold every formula once, to guarantee that the sub-formulas of
the shape µXi = ϕi in ψ are in fact of the shape µXi = ϕi in ϕj . We then build
a satisfaction derivation maintaining extra information, which we now detail.

• Upon unfolding a recursive formula for the first time, the recursion identi-
fiers are recorded and associated with the direction. Moreover, they are
also associated with an integer, the size of the tree f .

• Upon encountering a modality 〈a〉 annotated with identifiers, the direction
of the identifiers is updated with the modality according to the · C 〈a〉
operator. As the formula is cycle-free, the resulting direction cannot be
⊥.

• Upon unfolding a recursive formula µXi = ϕi in ϕj whose identifiers have
been already recorded, the integer associated to Xj is updated to be the
longest path, defined below, of the current focused tree in Xj ’s direction.

We now define the longest path of a focused tree in a given direction. Given
a tree f and a direction 〈a〉, we define the longest path as the longest cycle-free
path of f compatible with the direction, i.e. that does not start in the 〈a〉
direction. By definition of the trees, if 〈a〉 is 〈1〉 or 〈2〉, then the path is only
made of 〈1〉 and 〈2〉 steps. If 〈a〉 is

〈
1
〉

or
〈
2
〉
, then the path is a sequence of〈

1
〉

or
〈
2
〉

steps followed by a sequence of 〈1〉 and 〈2〉 steps joined by either a〈
1
〉
〈2〉 or a

〈
2
〉
〈1〉 sequence. In the case of the unknown direction , the longest

path is the size of the tree.
We may now prove the property that f belongs to the finite unfolding of ϕ

by induction on the lexical order of:

1. the number of identifiers not yet annotated with a direction and an integer;

2. the sum of the integers of every annotated identifier;

3. the size of the formula.

We proceed by case on the syntax of the formula. The interesting cases are
recursive formulas (in every other case, the size of the formula decreases while
leaving the other induction metrics unchanged as annotations are updated only
when unfolding formulas). In the case of a formula involving unannotated iden-
tifiers, they are now all annotated (thus decreasing the number of unannotated
identifiers) and associated to the size of the tree. In the case of an annotated
formula recursion ϕ = µXi = ϕi in ϕj , this formula may only have been pro-
duced by a previous expansion where Xj was replaced by ϕ. As the formula is
cycle-free, at least one modality has been encountered and it was annotated by
Xj , since Xj was free in the formula before the previous expansion. Moreover,
every modality encountered since the previous unfolding was also annotated by
Xj , and as the formula is cycle-free these modalities are all compatible. Thus
the longest path of f in Xj ’s direction has decreased by at least one, and as
the other identifiers are unchanged, the sum has decreased and we conclude by
induction that f is in a finite expansion of the expansion of ϕ. �

In the rest of the paper, we only consider least fixpoints. An important
consequence of Lemma 4.2 is that the logic restricted in this way is closed under
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Efficient Static Analysis of XML Paths and Types 11

negation using De Morgan’s dualities, extended to eventualities and fixpoints
as follows:

¬ 〈a〉ϕ def= ¬ 〈a〉> ∨ 〈a〉 ¬ϕ

¬µXi = ϕi in ψ
def= µXi = ¬ϕi{Xi/¬Xi} in ¬ψ{Xi/¬Xi}

5 XPath and Regular Tree Languages

XPath [6] is a powerful language for navigating in XML documents and selecting
sets of nodes matching a predicate. In their simplest form, XPath expressions
look like “directory navigation paths”. For example, the XPath expression

/child::book/child::chapter/child::section

navigates from the root of a document (designated by the leading “/”) through
the top-level “book” node to its “chapter” child nodes and on to its child nodes
named “section”. The result of the evaluation of the entire expression is the
set of all the “section” nodes that can be reached in this manner. The sit-
uation becomes more interesting when combined with XPath’s capability of
searching along “axes” other than “child”. For instance, one may use the
“preceding-sibling” axis for navigating backward through nodes of the same
parent, or the “ancestor” axis for navigating upward recursively. Furthermore,
at each step in the navigation the selected nodes can be filtered using qualifiers:
boolean expression between brackets that can test the existence or absence of
paths.

We consider a large XPath fragment covering all major features of the XPath
recommendation [6] except counting and comparisons between data values.

Figure 4 gives the syntax of XPath expressions. Figure 5 and Figure 6 give an
interpretation of XPath expressions as functions between sets of focused trees.

5.1 XPath Embedding

We now explain how an XPath expression can be translated into an equivalent
Lµ formula that performs navigation in focused trees in binary style.

Logical Interpretation of Axes The translation of navigational primitives
(namely XPath axes) is formally specified in Figure 7. The translation function,
noted “A→JaKχ”, takes an XPath axis a as input, and returns its Lµ transla-
tion, parameterized by the Lµ formula χ given as parameter. This parameter
represents the context in which the axis occurs and is needed for formula com-
position in order to translate path composition. More precisely, the formula
A→JaKχ holds for all nodes that can be accessed through the axis a from some
node verifying χ.

Let us consider an example. The formulaA→JchildKχ, translated as µZ.
〈
1
〉
χ∨〈

2
〉
Z, is satisfied by children of the context χ. These nodes consist of the first

child and the remaining children. From the first child, the context must be
reached immediately by going once upward via 1. From the remaining children,
the context is reached by going upward (any number of times) via 2 and finally
once via 1.
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12 Genevès, Layäıda & Schmitt

LXPath 3 e ::= XPath expression
/p absolute path

| p relative path
| e1 p e2 union
| e1 ∩ e2 intersection

Path p ::= path
p1/p2 path composition

| p[q] qualified path
| a::σ step with node test
| a::∗ step

Qualif q ::= qualifier
q1 and q2 conjunction

| q1 or q2 disjunction
| not q negation
| p path

Axis a ::= tree navigation axis
child | self | parent

| descendant | desc-or-self
| ancestor | anc-or-self
| foll-sibling | prec-sibling
| following | preceding

Figure 4: XPath Abstract Syntax.

Logical Interpretation of Expressions Figure 8 gives the translation of
XPath expressions into Lµ. The translation function “E→JeKχ” takes an XPath
expression e and a Lµ formula χ as input, and returns the corresponding Lµ
translation. The translation of a relative XPath expression marks the initial
context with s. The translation of an absolute XPath expression navigates to
the root which is taken as the initial context.

Figure 9 illustrates the translation of the XPath expression “child::a[child::b]”.
This expression selects all “a” child nodes of a given context which have at least
one “b” child. The translated Lµ formula holds for “a” nodes which are selected
by the expression. The first part of the translated formula, ϕ, corresponds to
the step “child::a” which selects candidates “a” nodes. The second part, ψ,
navigates downward in the subtrees of these candidate nodes to verify that they
have at least one immediate “b” child.

Note that without converse programs we would have been unable to dif-
ferentiate selected nodes from nodes whose existence is tested: we must state
properties on both the ancestors and the descendants of the selected node.
Equipping the Lµ logic with both forward and converse programs is therefore
crucial for supporting XPath1. Logics without converse programs may only be
used for solving XPath emptiness but cannot be used for solving other decision
problems such as containment efficiently.

XPath composition construct p1/p2 translates into formula composition in
Lµ, such that the resulting formula holds for all nodes accessed through p2 from

1One may ask whether it is possible to eliminate upward navigation at the XPath level
but it is well known that such XPath rewriting techniques cause exponential blow-ups of
expression sizes [40].
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Efficient Static Analysis of XML Paths and Types 13

SeJ·K· : LXPath → 2F → 2F

SeJ/pKF
def= SpJpKroot(F )

SeJpKF
def= SpJpK{(σs[tl],c)∈F}

SeJe1 p e2KF
def= SeJe1KF ∪ SeJe2KF

SeJe1 ∩ e2KF
def= SeJe1KF ∩ SeJe2KF

SpJ·K· : Path → 2F → 2F

SpJp1/p2KF
def=
{
f ′ | f ′ ∈ SpJp2K(SpJp1KF )

}
SpJp[q]KF

def= {f | f ∈ SpJpKF ∧ SqJqKf}

SpJa::σKF
def= {f | f ∈ SaJaKF ∧ nm(f) = σ}

SpJa::∗KF
def= {f | f ∈ SaJaKF }

SqJ·K· : Qualif → F → {true, false}

SqJq1 and q2Kf
def= SqJq1Kf ∧ SqJq2Kf

SqJq1 or q2Kf
def= SqJq1Kf ∨ SqJq2Kf

SqJnot qKf
def= ¬ SqJqKf

SqJpKf
def= SpJpK{f} 6= ∅

SaJ·K· : Axis → 2F → 2F

SaJselfKF
def= F

SaJchildKF
def= fchild(F ) ∪ SaJfoll-siblingKfchild(F )

SaJfoll-siblingKF
def= nsibling(F ) ∪ SaJfoll-siblingKnsibling(F )

SaJprec-siblingKF
def= psibling(F ) ∪ SaJprec-siblingKpsibling(F )

SaJparentKF
def= parent(F )

SaJdescendantKF
def= SaJchildKF ∪ SaJdescendantK(SaJchildKF )

SaJdesc-or-selfKF
def= F ∪ SaJdescendantKF

SaJancestorKF
def= SaJparentKF ∪ SaJancestorK(SaJparentKF )

SaJanc-or-selfKF
def= F ∪ SaJancestorKF

SaJfollowingKF
def= SaJdesc-or-selfK(SaJfoll-siblingK(SaJanc-or-selfKF ))

SaJprecedingKF
def= SaJdesc-or-selfK(SaJprec-siblingK(SaJanc-or-selfKF ))

Figure 5: Interpretation of XPath Expressions as Functions Between Sets of
Focused Trees.
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14 Genevès, Layäıda & Schmitt

fchild(F ) def= {f 〈1〉 | f ∈ F ∧ f 〈1〉 defined}

nsibling(F ) def= {f 〈2〉 | f ∈ F ∧ f 〈2〉 defined}

psibling(F ) def=
{
f
〈
2
〉
| f ∈ F ∧ f

〈
2
〉

defined
}

parent(F ) def= {(σ◦[rev a(tl l, t :: tlr)], c)
| (t, (tl l, c[σ◦], tlr)) ∈ F}

rev a(ε, tlr)
def= tlr

rev a(t :: tl l, tlr)
def= rev a(tl l, t :: tlr)

root(F ) def= {(σs[tl ], (tl ,Top, tl)) ∈ F}
∪ root(parent(F ))

Figure 6: Auxiliary Functions for XPath Interpretation.

A→J·K· : Axis → Lµ → Lµ
A→JselfKχ

def= χ

A→JchildKχ
def= µZ.

〈
1
〉
χ ∨

〈
2
〉
Z

A→Jfoll-siblingKχ
def= µZ.

〈
2
〉
χ ∨

〈
2
〉
Z

A→Jprec-siblingKχ
def= µZ. 〈2〉χ ∨ 〈2〉Z

A→JparentKχ
def= 〈1〉µZ.χ ∨ 〈2〉Z

A→JdescendantKχ
def= µZ.

〈
1
〉

(χ ∨ Z) ∨
〈
2
〉
Z

A→Jdesc-or-selfKχ
def= µZ.χ ∨ µY.

〈
1
〉

(Y ∨ Z) ∨
〈
2
〉
Y

A→JancestorKχ
def= 〈1〉µZ.χ ∨ 〈1〉Z ∨ 〈2〉Z

A→Janc-or-selfKχ
def= µZ.χ ∨ 〈1〉µY.Z ∨ 〈2〉Y

A→JfollowingKχ
def= A→Jdesc-or-selfKη1

A→JprecedingKχ
def= A→Jdesc-or-selfKη2

η1
def= A→Jfoll-siblingKA→Janc-or-selfKχ

η2
def= A→Jprec-siblingKA→Janc-or-selfKχ

Figure 7: Translation of XPath Axes.
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Efficient Static Analysis of XML Paths and Types 15

E→J·K· : LXPath → Lµ → Lµ
E→J/pKχ

def= P→JpK((µZ.¬〈1〉>∨〈2〉Z)∧(µY.χ∧s∨〈1〉Y ∨〈2〉Y ))

E→JpKχ
def= P→JpK(χ∧s)

E→Je1 p e2Kχ
def= E→Je1Kχ ∨ E→Je2Kχ

E→Je1 ∩ e2Kχ
def= E→Je1Kχ ∧ E→Je2Kχ

P→J·K· : Path → Lµ → Lµ
P→Jp1/p2Kχ

def= P→Jp2K(P→Jp1Kχ)

P→Jp[q]Kχ
def= P→JpKχ ∧Q←JqK>

P→Ja::σKχ
def= σ ∧A→JaKχ

P→Ja::∗Kχ
def= A→JaKχ

Figure 8: Translation of Expressions and Paths.

Translated Query: child::a[child::b]

a ∧ (µX.
˙
1
¸
(χ ∧s) ∨

˙
2
¸
X)| {z }

ϕ

∧ 〈1〉µY.b ∨ 〈2〉Y| {z }
ψ

χ

a ϕ

c

a

d

b

ϕ∧ψ

Figure 9: XPath Translation Example.
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16 Genevès, Layäıda & Schmitt

Q←J·K· : Qualif → Lµ → Lµ
Q←Jq1 and q2Kχ

def= Q←Jq1Kχ ∧Q←Jq2Kχ

Q←Jq1 or q2Kχ
def= Q←Jq1Kχ ∨Q←Jq2Kχ

Q←Jnot qKχ
def= ¬ Q←JqKχ

Q←JpKχ
def= P←JpKχ

P←J·K· : Path → Lµ → Lµ
P←Jp1/p2Kχ

def= P←Jp1K(P←Jp2Kχ)

P←Jp[q]Kχ
def= P←JpK(χ∧Q←JqK>)

P←Ja::σKχ
def= A←JaK(χ∧σ)

P←Ja::∗Kχ
def= A←JaKχ

A←J·K· : Axis → Lµ → Lµ
A←JaKχ

def= A→Jsymmetric(a)Kχ

Figure 10: Translation of Qualifiers.

those nodes accessed through p1 from χ. The translation of the branching con-
struct p[q] significantly differs. The resulting formula must hold for all nodes
that can be accessed through p and from which q holds. To preserve semantics,
the translation of p[q] stops the “selecting navigation” to those nodes reached
by p, then filters them depending on whether q holds or not. We express this
by introducing a dual formal translation function for XPath qualifiers, noted
Q←JqK· and defined in Figure 10, that performs “filtering” instead of naviga-
tion. Specifically, P→J·K· can be seen as the “navigational” translating function:
the translated formula holds for target nodes of the given path. On the opposite,
Q←J·K· can be seen as the “filtering” translating function: it states the existence
of a path without moving to its result. The translated formula Q←JqKχ (respec-
tively P←JpKχ) holds for nodes from which there exists a qualifier q (respectively
a path p) leading to a node verifying χ.

XPath translation is based on these two translating “modes”, the first one
being used for paths and the second one for qualifiers. Whenever the “filtering”
mode is entered, it will never be left.

The translation of paths inside qualifiers is also given in Figure 10. It
uses the translation for axes and is based on XPath symmetry: symmetric(a)
denotes the symmetric XPath axis corresponding to the axis a (for instance
symmetric(child) = parent).

We may now state that our translation is correct, by relating the interpre-
tation of an XPath formula applied to some set of trees to the interpretation of
its translation, by stating that the translation of a formula is cycle-free, and by
giving a bound in the size of this translation.
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Efficient Static Analysis of XML Paths and Types 17

Translation of
into Lµ:

following-sibling::a
a∧
(
µZ.

〈
2
〉
s ∨

〈
2
〉
Z
)/preceding-sibling::b

b ∧ [µY. 〈2〉 ( ) ∨ 〈2〉Y ]

s

b

a

c

a

b

Figure 11: Example of Back and Forth – Yet Cycle-Free – XPath Navigation.

We restrict the sets of trees to which an XPath formula may be applied to
those that may be denoted by an Lµ formula. This restriction will be justified
in Section 5.2 where we show that every regular tree language may be translated
to an Lµ formula.

Proposition 5.1 (Translation Correctness) The following hold for an XPath
expression e and a Lµ formula ϕ denoting a set of focused trees, with ψ =
E→JeKϕ:

1. JψK∅ = SeJeKJϕK∅

2. ψ is cycle-free

3. the size of ψ is linear in the size of e and ϕ

Proof: The proof uses a structural induction that “peels off” the compositional
layers of each set of rules over focused trees. The cycle-free part follows from
the fact that translated fixpoint formulas are closed and there is no nesting of
modalities with converse programs between a fixpoint variable and its binder.
Each XPath navigation step is cycle-free, and their composition yields a proper
nesting of fixpoint formulas which is also cycle-free. Figure 11 illustrates this on
an typical example. Finally, formal translations do not duplicate any subformula
of arbitrary length. �

5.2 Embedding Regular Tree Languages

Several formalisms exist for describing types of XML documents (e.g. DTD,
XML Schema, Relax NG). In this paper we embed regular tree languages, which
gather all of them [38] into Lµ. We rely on a straightforward isomorphism be-
tween unranked regular tree types and binary regular tree types [26]. Assuming
a countably infinite set of type variables ranged over by X, binary regular tree
type expressions are defined as follows:

LBT 3 T ::= tree type expression
∅ empty set

| ε leaf
| T1 p T2 union
| σ(X1, X2) label
| let Xi.Ti in T binder
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18 Genevès, Layäıda & Schmitt

<!ELEMENT article (meta, (text | redirect))>

<!ELEMENT meta (title, status?, interwiki*, history?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT interwiki (#PCDATA)>

<!ELEMENT status (#PCDATA)>

<!ELEMENT history (edit)+>

<!ELEMENT edit (status?, interwiki*, (text | redirect)?)>

<!ELEMENT redirect EMPTY>

<!ELEMENT text (#PCDATA)>

Figure 12: A Fragment of the DTD of the Wikipedia Encyclopedia.

We refer the reader to [26] for the denotational semantics of regular tree lan-
guages, and directly introduce their translation into Lµ:

J·K : LBT → Lµ
JT K def= σ ∧ ¬σ for T = ∅, ε

JT1 p T2K
def= JT1K ∨ JT2K

Jσ(X1, X2)K def= σ ∧ succ1(X1) ∧ succ2(X2)

Jlet Xi.Ti in T K def= µXi = JTiK in JT K

where we use the formula σ∧¬σ as “false”, and the function succ·(·) takes care
of setting the type frontier:

succα(X) =

 ¬ 〈α〉> if X is bound to ε
¬ 〈α〉> ∨ 〈α〉X if nullable(X)
〈α〉X if not nullable(X)

according to the predicate nullable(X) which indicates whether the type T 6= ε
bound to X contains the empty tree. For example, Figure 14 gives the trans-
lation of a DTD fragment of the Wikipedia encyclopedia [47] shown on Figure
12. The intermediate binary tree type encoding of the DTD is shown on Figure
13.

Note that the translation of a regular tree type uses only downward modal-
ities since it describes the allowed subtrees at a given context. No additional
restriction is imposed on the context from which the type definition starts. In
particular, navigation is allowed in the upward direction so that we can support
type constraints for which we have only partial knowledge in a given direction.
However, when we know the position of the root, conditions similar to those
of absolute paths are added in the form of additional formulas describing the
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Efficient Static Analysis of XML Paths and Types 19

$9 ->EPSILON
| text($Epsilon, $Epsilon)
| redirect($Epsilon, $Epsilon)
| interwiki($Epsilon, $9)

$6 ->EPSILON
| text($Epsilon, $Epsilon)
| redirect($Epsilon, $Epsilon)
| interwiki($Epsilon, $9)
| status($Epsilon, $9)

$5 ->edit($6, $Epsilon)
| edit($6, $5)

$14 ->EPSILON
| history($5, $Epsilon)
| interwiki($Epsilon, $14)

$4 ->EPSILON
| history($5, $Epsilon)
| interwiki($Epsilon, $14)
| status($Epsilon, $14)

$2 ->title($Epsilon, $4)
$17 ->text($Epsilon, $Epsilon)

| redirect($Epsilon, $Epsilon)
$1 ->meta($2, $17)
$article ->article($1, $Epsilon)
Start Symbol is $article
9 type variables.
9 terminals.

Figure 13: The Binary Encoding of the DTD of Figure 12.

(let_mu
X2=((((text & ~(<1>T)) & ~(<2>T)) | ((redirect & ~(<1>T)) & ~(<2>T)))

| ((interwiki & ~(<1>T)) & (~(<2>T) | <2>X2))),
X3=(((((text & ~(<1>T)) & ~(<2>T)) | ((redirect & ~(<1>T)) & ~(<2>T)))

| ((interwiki & ~(<1>T)) & (~(<2>T) | <2>X2)))
| ((status & ~(<1>T)) & (~(<2>T) | <2>X2))),

X4=(((edit & (~(<1>T) | <1>X3)) & ~(<2>T)) | ((edit & (~(<1>T) | <1>X3)) & <2>X4)),
X5=(((history & <1>X4) & ~(<2>T)) | ((interwiki & ~(<1>T)) & (~(<2>T) | <2>X5))),
X6=((((history & <1>X4) & ~(<2>T)) | ((interwiki & ~(<1>T)) & (~(<2>T)

| <2>X5))) | ((status & ~(<1>T)) & (~(<2>T) | <2>X5))),
X7=((title & ~(<1>T)) & (~(<2>T) | <2>X6)),
X8=(((text & ~(<1>T)) & ~(<2>T)) | ((redirect & ~(<1>T)) & ~(<2>T))),
X9=((meta & <1>X7) & <2>X8),
X10=((article & <1>X9) & ~(<2>T))

in
X10)

Figure 14: The Lµ Formula for the DTD of Figure 12.
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20 Genevès, Layäıda & Schmitt

position that need to be satisfied. This is particularly useful when a regular
type is used by an XPath expression that starts its navigation at the root (/p)
since the path will not go above the root of the type (by adding the restriction
µZ.¬

〈
1
〉
> ∨

〈
2
〉
Z).

On the other hand, if the type is compared with another type (typically to
check inclusion of the result of an XPath expression in this type), then there
is no restriction as to where the root of the type is (our translation does not
impose the chosen node to be at the root). This is particularly useful since an
XPath expression usually returns a set of nodes deep in the tree which we may
compare to this partially defined type.

We are considering as future work a modification of the translation of types
such that it imposes the context of a type to also follow the regular tree language
definition (stating for instance that the parent of a given node may only be some
specific other nodes).

6 Satisfiability-Testing Algorithm

In this section we present our algorithm, show that it is sound and complete,
and prove a time complexity boundary. To check a formula ϕ, our algorithm
builds satisfiable formulas out of some subformulas (and their negation) of ϕ,
then checks whether ϕ was produced. We first describe how to extract the
subformulas from ϕ.

6.1 Preliminary Definitions

For ϕ = (µXi = ϕi in ψ) we define exp(ϕ) def= ψ{µXi=ϕi in Xi/Xi} which denotes
the formula ψ in which every occurrence of a Xi is replaced by (µXi = ϕi in Xi).

We define the Fisher-Ladner closure cl(ψ) of a formula ψ as the set of all
subformulas of ψ where fixpoint formulas are additionally unwound once. Specif-
ically, we define the relation →e⊆ Lµ × Lµ as the least relation that satisfies
the following:

• ϕ1 ∧ ϕ2 →e ϕ1, ϕ1 ∧ ϕ2 →e ϕ2

• ϕ1 ∨ ϕ2 →e ϕ1, ϕ1 ∨ ϕ2 →e ϕ2

• 〈a〉ϕ′ →e ϕ
′

• µXi = ϕi in ψ →e exp(µXi = ϕi in ψ)

The closure cl(ψ) is the smallest set S that contains ψ and closed under the
relation →e, i.e. if ϕ1 ∈ S and ϕ1 →e ϕ2 then ϕ2 ∈ S.

We call Σ(ψ) the set of atomic propositions σ used in ψ along with an-
other name, σx, that does not occur in ψ to represent atomic propositions not
occurring in ψ.

We define cl∗(ψ) = cl(ψ) ∪ {¬ϕ | ϕ ∈ cl(ψ)}. Every formula ϕ ∈ cl∗(ψ)
can be seen as a boolean combination of formulas of a set called the Lean of ψ,
inspired from [41]. We note this set Lean(ψ) and define it as follows:

Lean(ψ) =
{
〈a〉> | a ∈ {1, 2, 1, 2}

}
∪ Σ(ψ)

∪ {s} ∪ {〈a〉ϕ | 〈a〉ϕ ∈ cl(ψ)}
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Efficient Static Analysis of XML Paths and Types 21

>
.
∈ t =⇒ (∅, ∅)

ϕ ∈ Lean(ψ) ϕ ∈ t
ϕ

.
∈ t =⇒ ({ϕ}, ∅)

ϕ1

.
∈ t =⇒ (T1, F1) ϕ2

.
∈ t =⇒ (T2, F2)

ϕ1 ∧ ϕ2

.
∈ t =⇒ (T1 ∪ T2, F1 ∪ F2)

ϕ1

.
∈ t =⇒ (T1, F1)

ϕ1 ∨ ϕ2

.
∈ t =⇒ (T1, F1)

ϕ2

.
∈ t =⇒ (T2, F2)

ϕ1 ∨ ϕ2

.
∈ t =⇒ (T2, F2)

ϕ
.

/∈ t =⇒ (T, F )

¬ϕ
.
∈ t =⇒ (T, F )

exp(µXi = ϕi in ψ)
.
∈ t =⇒ (T, F )

µXi = ϕi in ψ
.
∈ t =⇒ (T, F )

ϕ ∈ Lean(ψ) ϕ 6∈ t

ϕ
.

/∈ t =⇒ (∅, {ϕ})

ϕ1

.

/∈ t =⇒ (T1, F1) ϕ2

.

/∈ t =⇒ (T2, F2)

ϕ1 ∨ ϕ2

.

/∈ t =⇒ (T1 ∪ T2, F1 ∪ F2)

ϕ1

.

/∈ t =⇒ (T1, F1)

ϕ1 ∧ ϕ2

.

/∈ t =⇒ (T1, F1)

ϕ2

.

/∈ t =⇒ (T2, F2)

ϕ1 ∧ ϕ2

.

/∈ t =⇒ (T2, F2)

ϕ
.
∈ t =⇒ (T, F )

¬ϕ
.

/∈ t =⇒ (T, F )

exp(µXi = ϕi in ψ)
.

/∈ t =⇒ (T, F )

µXi = ϕi in ψ
.

/∈ t =⇒ (T, F )

Figure 15: Truth assignment of a formula

A ψ-type (or simply a “type”) (Hintikka set in the temporal logic literature)
is a set t ⊆ Lean(ψ) such that:

• ∀ 〈a〉ϕ ∈ Lean(ψ), 〈a〉ϕ ∈ t⇒ 〈a〉> ∈ t (modal consistency);

•
〈
1
〉
> /∈ t∨

〈
2
〉
> /∈ t (a tree node cannot be both a first child and a second

child);

• exactly one atomic proposition σ ∈ t (XML labeling); we use the function
σ(t) to return the atomic proposition of a type t;

• s may belong to t.

We call Types(ψ) the set of ψ-types. For a ψ-type t, the complement of t is the
set Lean(ψ) \ t.

A type determines a truth assignment of every formula in cl∗(ψ) with the
relation

.
∈ defined in Figure 15. Note that such derivations are finite because the

number of naked µXi = ϕi in ψ (that do not occur under modalities) strictly
decreases after each expansion.

We often write ϕ
.
∈ t if there are some T, F such that ϕ

.
∈ t =⇒ (T, F ). We

say that a formula ϕ is true at a type t iff ϕ
.
∈ t.

We now relate a formula to the truth assignment of its ψ-types.
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22 Genevès, Layäıda & Schmitt

Upd(X) def= X ∪

 (t, w1(t,X◦), w2(t,X◦)) | s /∈ t ⊆ Types(ψ)
∧ 〈1〉> ∈ t⇒ w1(t,X◦) 6= ∅
∧ 〈2〉> ∈ t⇒ w2(t,X◦) 6= ∅


∪

 (t, w1(t,X◦), w2(t,X◦))s | s ∈ t ⊆ Types(ψ)
∧ 〈1〉> ∈ t⇒ w1(t,X◦) 6= ∅
∧ 〈2〉> ∈ t⇒ w2(t,X◦) 6= ∅


∪

 (t, w1(t,Xs), w2(t,X◦))s | s /∈ t ⊆ Types(ψ)
∧ 〈1〉> ∈ t⇒ w1(t,Xs) 6= ∅
∧ 〈2〉> ∈ t⇒ w2(t,X◦) 6= ∅


∪

 (t, w1(t,X◦), w2(t,Xs))s | s /∈ t ⊆ Types(ψ)
∧ 〈1〉> ∈ t⇒ w1(t,X◦) 6= ∅
∧ 〈2〉> ∈ t⇒ w2(t,Xs) 6= ∅


wa(t,X) def= {type(x) | x ∈ X ∧ 〈a〉> ∈ type(x) ∧∆a(t, type(x))}

type((t, w1, w2)) def= t

FinalCheck(ψ,X) def= ∃x ∈ X, dsat(x, ψ) ∧ ∀a ∈ {1, 2}, 〈a〉> /∈ type(x)

dsat((t, w1, w2), ψ) def= ψ
.
∈ t ∨ ∃x′, dsat(x′, ψ) ∧ (x′ ∈ w1 ∨ x′ ∈ w2)

Xs def=
{
x ∈ X | x = ( , , )s

}
X◦

def= {x ∈ X | x = ( , , )}

Figure 16: Operations used by the Algorithm.

Proposition 6.1 If ϕ
.
∈ t =⇒ (T, F ), then we have T ⊆ t, F ⊆ Lean(ϕ) \ t,

and
∧
ψ∈T ψ ∧

∧
ψ∈F ¬ψ implies ϕ (every tree in the interpretation of the first

formula is in the interpretation of the second). If ϕ
.

/∈ t =⇒ (T, F ), then we
have T ⊆ t, F ⊆ Lean(ϕ) \ t, and

∧
ψ∈T ψ ∧

∧
ψ∈F ¬ψ implies ¬ϕ.

Proof: Immediate by induction on the derivations. �
We next define a compatibility relation between types to state that two types

are related according to a modality.

Definition 6.2 (Compatibility relation) Two types t and t′ are compatible
under a ∈ {1, 2}, written ∆a(t, t′), iff

∀ 〈a〉ϕ ∈ Lean(ψ), 〈a〉ϕ ∈ t⇔ ϕ
.
∈ t′

∀ 〈a〉ϕ ∈ Lean(ψ), 〈a〉ϕ ∈ t′ ⇔ ϕ
.
∈ t

6.2 The Algorithm

The algorithm works on sets of triples of the form (t, w1, w2) where t is a type,
and w1 and w2 are sets of types which represent every witness for t according
to relations ∆1(t, ·) and ∆2(t, ·).

The algorithm proceeds in a bottom-up approach, repeatedly adding new
triples until a satisfying model is found (i.e. a triple whose first component
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Efficient Static Analysis of XML Paths and Types 23

T 3
{
|||

T 2
{
|||

T 1
{
|||

proved tree
structure

pending
backward
modalities

Figure 17: Algorithm’s principle: progressive bottom-up reasoning.

is a type implying the formula), or until no more triple can be added. Each
iteration of the algorithm builds types representing deeper trees (in the 1 and
2 direction) with pending backward modalities that will be fulfilled at later
iterations. Types with no backward modalities are satisfiable, and if such a
type implies the formula being tested, then it is satisfiable. The main iteration
is as follows:

X ← ∅
repeat
X ′ ← X
X ← Upd(X ′)
if FinalCheck(ψ,X) then

return “ψ is satisfiable”
until X = X ′

return “ψ is unsatisfiable”

where X ⊆ Types(ψ)×2Types(ψ)×2Types(ψ) and the update operation Upd(·) and
success check operation FinalCheck(·, ·) are defined on Figure 16. The update
operation requires four almost identical cases to ensure that the optional mark
remains unique. The first case corresponds to the absence of the mark, the
second case to the present of the mark at the top level, the third case to the
presence of the mark deeper in the first child, and the last case to the presence
of the mark deeper in the second child.

At each step of the algorithm, FinalCheck(·, ·) verifies whether the tested
formula is implied by newly added types without pending (unproved) backward
modalities, so that the algorithm may terminate as soon as a satisfying tree is
found.

We note Xi the set of triples and T i the set of types after i iterations:
T i =

{
type(x) | x ∈ Xi

}
. Note that T i+1 is the set of types for which at least

one witness belongs to T i.

6.3 Example Run of the Algorithm

In a sense, the algorithm performs a kind of progressive bottom-up reasoning
while ensuring partial (forward) satisfiability of subformulas, as illustrated by
Figure 17.

More specifically, Figure 18 illustrates a run of the algorithm for check-
ing whether the XPath query child::c/preceding-sibling::a[b] is contained in the
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24 Genevès, Layäıda & Schmitt

XPath query child::c[b]. These expressions are first compiled into the logic as
explained in section 5.1. For the second translation, the final focus of the tree
is a node named c. As we reach it going through a “child” step, formula θ
ensures that the parent node is the starting node. Finally, from the final focus
of the tree, formula η tests that a child named b is present. As concerns the first
formula, the final focus of the tree is on a node named a. We get there by a
“preceding-sibling” step from a c node, hence we need to make sure that there
is a following sibling named c (this is the recursion on Y). Once this c node has
been found, it must be made sure that it was reached by a “child” step from
the start of the query, using the same formula θ as before. Finally, going back
to the final focus in the tree, we need to check there is a child named b, using
again the formula η. Note that the start mark is crucial in this containment
case: it ensures that when both formulas are combined, the XPath expressions
start from the same context.

From the formulas ϕ1 and ϕ2 corresponding to each XPath query, we build
a containment formula ψ = ϕ1 ∧¬ϕ2 (the negated implication). If this formula
is unsatisfiable, then the first XPath expression is contained in the second one.
Lean(ψ) is then computed, and the fixpoint computation starts: the set of types
T 1 contains all possible leaves. Each type added in T i (i ≥ 2) requires at least
one witness type found in T i−1 (else it would have been added at some previous
step j < i). In this example, a satisfying binary tree of depth 3 is found (as
shown on Figure 18), therefore the algorithm stops just after computing T 3.
The first XPath query is not contained in the second one: a counter-example
tree is provided to the user (see Figure 18).

6.4 Correctness and Complexity

In this section we prove the correctness of the satisfiability testing algorithm,
and show that its time complexity is 2O(|Lean(ψ)|).

Theorem 6.3 (Correctness) The algorithm decides satisfiability of Lµ for-
mulas over finite focused trees.

Termination For ψ ∈ Lµ, since cl(ψ) is a finite set, Lean(ψ) and 2Lean(ψ) are
also finite. Furthermore, Upd(·) is monotonic and each Xi is included in the
finite set Types(ψ) × 2Types(ψ) × 2Types(ψ), therefore the algorithm terminates.
To finish the proof, it thus suffices to prove soundness and completeness.

Preliminary Definitions for Soundness First, we introduce a notion of
partial satisfiability for a formula, where backward modalities are only checked
up to a given level. A formula ϕ is partially satisfied iff JϕK0

V 6= ∅ as defined in
Figure 19.

For a type t, we note ϕc(t) its most constrained formula, where atoms are
taken from Lean(ψ). In the following, ◦ stands for s if s ∈ t, and for ¬s
otherwise.

ϕc(t) = σ(t) ∧
∧

σ∈Σ,σ/∈t

¬σ ∧ ◦ ∧
∧
〈a〉ϕ∈t

〈a〉ϕ ∧
∧
〈a〉ϕ/∈t

¬ 〈a〉ϕ

We now introduce a notion of paths, written ρ which are concatenations of
modalities: the empty path is written ε, and path concatenation is written ρa.
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Efficient Static Analysis of XML Paths and Types 25

s

〈1〉 η a ∧
˙
1
¸

s

b c

T 3
{
|||

T 2
{
|||

T 1
{
|||

a

b

c

binary to n-ary
tree encoding

Lean(ψ) : 〈1〉> 〈2〉>
˙
1
¸
>

˙
2
¸
> s a b c σ 〈2〉 c

˙
1
¸

s ... 〈2〉 η| {z }
topological propositions

| {z }
atomic propositions in ψ

| {z }
existential formulas in cl(ψ)

ψ = ϕ1 ∧ ¬ϕ2

ϕ1 = E→Je1K> = a ∧ (µY. 〈2〉 (c ∧ θ) ∨ 〈2〉Y ) ∧ 〈1〉 η
ϕ2 = E→Je2K> = c ∧ µX.

˙
1
¸
s ∨

˙
2
¸
X| {z }

θ

∧ 〈1〉µZ.b ∨ 〈2〉Z| {z }
η

e1 = child::c/preceding-sibling::a[child::b]

e2 = child::c[child::b]

Figure 18: Run of the algorithm for a sample XPath containment problem:

e1

?
⊆ e2.

J>KnV
def= F JXKnV

def= V (X)

Jϕ ∨ ψKnV
def= JϕKnV ∪ JψKnV JpKnV

def= {f | nm(f) = p}

Jϕ ∧ ψKnV
def= JϕKnV ∩ JψKnV J¬pKnV

def= {f | nm(f) 6= p}

J
〈
1
〉
ϕK0
V

def= F JsKnV
def=
{
f | f = (σs[tl ], c)

}
J
〈
2
〉
ϕK0
V

def= F J¬sKnV
def= {f | f = (σ[tl ], c)}

J
〈
1
〉
ϕKn>0
V

def=
{
f 〈1〉 | f ∈ JϕKn−1

V ∧ f 〈1〉 defined
}

J
〈
2
〉
ϕKn>0
V

def=
{
f 〈2〉 | f ∈ JϕKn−1

V ∧ f 〈2〉 defined
}

J〈1〉ϕKnV
def=
{
f
〈
1
〉
| f ∈ JϕKn+1

V ∧ f
〈
1
〉

defined
}

J〈2〉ϕKnV
def=
{
f
〈
2
〉
| f ∈ JϕKn+1

V ∧ f
〈
2
〉

defined
}

J¬ 〈a〉>KnV
def= {f | f 〈a〉 undefined}

JµXi = ϕi in ψKnV
def= let Ti =

(⋂{
Ti ⊆ F | JϕiKnV [Ti/Xi]

⊆ Ti
})

i

in JψKn
V [Ti/Xi]

Figure 19: Partial satisfiability
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26 Genevès, Layäıda & Schmitt

Every path may be given a depth:

depth(ε) def= 0

depth(ρa) def= depth(ρ) + 1 if a ∈ {1, 2}

depth(ρa) def= depth(ρ)− 1 if a ∈ {1, 2}

A forward path is a path that only mentions forward modalities.
We define a tree of types T as a tree whose nodes are types, T (·) = t, with at

most two children, T 〈1〉 and T 〈2〉. The navigation in trees of types is trivially
extended to forward paths. A tree of types is consistent iff for every forward
path ρ and for every child a of T 〈ρ〉, we have T 〈ρ〉 (·) = t, T 〈ρa〉 (·) = t′ implies
〈a〉> ∈ t, 〈a〉> ∈ t′, and ∆a(t, t′).

Given a consistent tree of types T , we now define a dependency graph whose
nodes are pairs of a forward path ρ and a formula in t = T 〈ρ〉 (·) or the negation
of a formula in the complement of t. The directed edges of the graph are labeled
with modalities consistent with the tree. This graph corresponds to what the
algorithm ultimately builds, as every iteration discovers longer forward paths.
For every (ρ, ϕ) in the nodes we build the following edges:

• ϕ ∈ Σ(ψ) ∪ ¬Σ(ψ) ∪ {s,¬s, 〈a〉>,¬ 〈a〉>}: no edge

• ρ = ε and ϕ = 〈a〉ϕ′ with a ∈ {1, 2}: no edge

• ρ = ρ′a and ϕ = 〈a′〉ϕ′: let t = T 〈ρ〉 (·).
We first consider the case where a′ ∈ {1, 2} and let t′ = T 〈ρa′〉 (·). As T
is consistent, we have ϕ′

.
∈ t′ hence there are T, F such that ϕ′

.
∈ t′ =⇒

(T, F ) with T a subset of t′, and F a subset of the complement of t′. For
every ϕT ∈ T we add an edge a′ to (ρa′, ϕT ), and for every ϕF ∈ F we
add an edge a′ to (ρa′,¬ϕF ).

We now consider the case where a′ ∈ {1, 2} and first show that we have
a′ = a. As T is consistent, we have 〈a〉> in t. Moreover, as t is a tree type,
it must contain 〈a′〉>. As a′ is a backward modality, it must be equal to
a as at most one may be present. Hence we have ρ′aa′ = ρ′ and we let
t′ = T 〈ρ′〉 (·). By consistency, we have ϕ′

.
∈ t′, hence ϕ′

.
∈ t′ =⇒ (T, F )

and we add edges as in the previous case: to (ρ′, ϕT ) and to (ρ′,¬ϕF ).

• ρ = ρ′a and ϕ = ¬ 〈a′〉ϕ′: let t = T 〈ρ〉 (·). If 〈a′〉> is not in t then no edge
is added. Otherwise, we proceed as in the previous case. For downward
modalities, we let t′ = T 〈ρa′〉 (·) and we compute ϕ′

.

/∈ t′ =⇒ (T, F ),
which we know to hold by consistency. We then add edges to (ρa′, ϕT ) and
to (ρa′,¬ϕF ) as before. For upward modalities, as we have 〈a′〉> in t, we
must have a′ = a and we let t′ = T 〈ρ′〉 (·). We compute ϕ′

.

/∈ t′ =⇒ (T, F )
and we add the edges to (ρ′, ϕT ) and to (ρ′,¬ϕF ) as before.

Lemma 6.4 The dependency graph of a consistent tree of types of a cycle-free
formula is cycle free.

Proof: The proof proceeds by induction on the depth of the cycle, relying on
the fact that the dependency graph is consistent with the tree structure (i.e. if
a 1 edge reaches a node, no 2 edge may leave this node). The induction case is
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Efficient Static Analysis of XML Paths and Types 27

trivial: if there is a cycle of depth n, there must be a cycle of depth n − 1, a
contradiction.

The base case is for a cycle of depth 1. We describe one case, where the
cycle is (ρ, 〈1〉ϕ) −→1 (ρ1,

〈
1
〉
ψ) −→1 (ρ, 〈1〉ϕ). As ϕ must be a subformula of

ψ and ψ a subformula of ϕ, they are both recursive formula. An analysis of the
shape of ϕ, based on the derivations ϕ

.
∈ t =⇒ (T, F ) and ψ

.
∈ t′ =⇒ (T ′, F ′)

with 〈1〉ψ ∈ T and
〈
1
〉
ϕ ∈ T ′ then shows that ϕ is not a cycle-free formula, a

contradiction. �

Lemma 6.5 (Soundness) Let T be the result set of the algorithm. For any
type t ∈ T and any ϕ such that ϕ

.
∈ t, then JϕK0

∅ 6= ∅.

Proof:
The proof proceeds by induction on the number of steps of the algorithm.

For every t in Tn and every witness tree T rooted at t built from Xn, we show
that T is a consistent tree type and we build a focused tree f that is rooted (i.e.
of the shape (σ◦[tl ], (ε,Top, tl ′))). The tree f is in the partial interpretation of
ϕc(t): f 〈ρ〉 ∈ Jϕc(T 〈ρ〉 (·))Kdepth(ρ)

∅ for any path ρ whose depth is 0 or more,
and f contains the start mark only if s occurs in T . We then show that for all
ϕ

.
∈ t, we have f ∈ JϕK0

∅.
The base case is trivial by the shape of t: it may only contain backward

modalities (trivially satisfied at level 0), one atomic proposition, and one start
proposition. Moreover there is only one tree of witnesses to consider, the tree
whose only node is t. If the atomic proposition is σ, then the focused tree
returned is either (σs[ε], (ε,Top, ε)) or (σ[ε], (ε,Top, ε)) depending on the start
proposition.

In the inductive case, we consider every witness types for both downward
modalities, t1 and t2. For each of them, we consider every tree type T1 and T2

and build a tree type rooted at t which is consistent by definition of the algo-
rithm. By induction, we have f1 and f2 such that f1 〈ρ〉 ∈ Jϕc(T 〈1ρ〉 (·))Kdepth(ρ)

∅
and f2 〈ρ〉 ∈ Jϕc(T 〈2ρ〉 (·))Kdepth(ρ)

∅ for any path ρ whose depth is 0 or more. If
either T1 or T2 contains s, then f1 or f2 contains the start mark by induction.
Moreover, by definition of the algorithm, it is the case for only one of them and
s is not in t.

Let f1 be (σ◦1 [tl1], (ε,Top, tr1)) and f2 be (σ◦2 [tl2], (ε,Top, tr2)). Let f =
(σ(t)◦[σ◦1 [tl1] :: tr1], (ε,Top, σ◦2 [tl2] :: tr2)) where σ(t)◦ is σ(t)s if s ∈ t, and
σ(t) otherwise. Note that f contains exactly one start mark iff s ∈ T .

We next show that f1 〈ρ〉 ∈ Jϕc(T 〈1ρ〉 (·))Kdepth(ρ)
∅ implies f 〈1ρ〉 ∈ Jϕc(T 〈1ρ〉 (·))Kdepth(ρ)

∅ ,
and the same for the other modality, by induction on the depth of the path,
remarking that every backward modality at level 0 is trivially satisfied.

We then proceed to show that f satisfies ϕc(t) at level 0. To do so, we need
a further induction on the dependency tree. Let ρ be a path of the dependency
tree and ψ be a formula at that path in the dependency tree, we show that
f 〈ρ〉 ∈ JψKdepth(ρ)

V . To do so, we rely on f 〈ρ〉 ∈ JψKdepth(ρ)−1
V if depth(ρ) 6= 0.

In the base case at depth 0, the result is by construction as the formula is either
a backward modality or an atomic formula. In the base case at another depth,
the case is immediate by induction as the formula has to be an atomic formula
whose interpretation does not depend on the depth. In the induction case, we
conclude by the inductive hypothesis and by definition of partial satisfiability.
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28 Genevès, Layäıda & Schmitt

f ρ >
nm(f) = σ

f ρ σ

nm(f) 6= σ

f ρ ¬σ (σs[tl ], c) ρ s (σ[tl ], c) ρ ¬s

f ρ ϕ

f ρ ϕ ∨ ψ
f ρ ψ

f ρ ϕ ∨ ψ
f ρ ϕ f ρ ψ

f ρ ϕ ∧ ψ
f 〈1〉 ρ1 ϕ
f ρ 〈1〉ϕ

f 〈2〉 ρ2 ϕ
f ρ 〈2〉ϕ

f
〈
1
〉
ρ1 ϕ

f ρ
〈
1
〉
ϕ

f
〈
2
〉
ρ2 ϕ

f ρ
〈
2
〉
ϕ

f 〈a〉 undefined
f ρ ¬ 〈a〉>

f ρ exp(µXi = ϕi in ψ)
f ρ µXi = ϕi in ψ

Figure 20: Satisfiability relation

We conclude the proof by noticing that the final selected type has no back-
ward modality, hence Jϕc(t)K∅0 = Jϕc(t)K∅.

�

Lemma 6.6 (Completeness) For a cycle-free closed formula ϕ ∈ Lµ, if JϕK∅ 6=
∅ then the algorithm terminates with a set of triples X such that FinalCheck(ϕ,X).

Proof: Let f ∈ JϕK∅ be a smallest focused tree validating the formula such that
the names occurring in f are either also occurring in ϕ or are a single other
name σx. By Lemma 4.2, there is a finite unfolding of ϕ such that f belongs
to its interpretation. Hence there is a finite satisfiability derivation, defined in
Figure 20, of f ε ϕ.

In the satisfiability derivation, we assume the paths are normalized (11 = ε).
Hence every path is a concatenation of a (possibly empty) backward path ρb
followed by a forward path ρf .

This derivation has the following property, immediate by induction: let f
the initial focused tree, then f ′ ρ ϕ implies f ′ = f 〈ρ〉. Hence if f1 ρ ϕ1 and
f2 ρ ϕ2, then f1 = f2.

We next use the satisfiability derivation to construct a run of the algorithm
that concludes that ϕ is satisfiable. We first associate each path to a type, which
we then saturate (adding formulas that are true even though the satisfiability
relation does not mention them at that path). We next show that every formula
at a path in the satisfiability relation is implied by the type at that path, and
that types are consistent according to the ∆a(t, t′) relation. We then conclude
that the types are created by a run of the algorithm by induction on the paths.

More precisely, we first describe how we build tρ. Let Φρ the set of formu-
las at path ρ. We first add every formula of Φρ that is in Lean(ϕ), then we
complete this set to yield a correct type: if 〈a〉ψ ∈ Φρ then we add 〈a〉>; for
every modality a for which f 〈a〉 is defined we add 〈a〉>; if there is no atomic
proposition in Φρ then we add nm(f 〈ρ〉); finally if f 〈ρ〉 has the start mark we
add s.

We next saturate the types. For every path tρ if tρa exists, if 〈a〉ψ ∈ Lean(ϕ),
and if ψ

.
∈ tρa then we add 〈a〉ψ to tρ. This procedure is repeated until it does
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Efficient Static Analysis of XML Paths and Types 29

not change any type. Termination is a consequence of the finite size of the
lean and of the number of paths. The resulting types are satisfiable as they are
before saturation (since a focused tree satisfies them) and each formula added
during saturation is first checked to be implied by the type.

We next show (*): for any given path ρ, if ϕρ ∈ Φρ then ϕρ
.
∈ tρ, by induction

on the satisfiability derivation. Base cases with no negation are immediate by
definition of tρ as these are formulas of the lean. For base cases with negation,
we rely on the fact that f 〈ρ〉 satisfies the formula, hence we cannot for instance
have σ and ¬σ in Φρ. If ¬ 〈a〉> ∈ Φρ then we cannot also have 〈a〉ψ ∈ Φρ as
ρa is not a valid path, hence 〈a〉> is not in tρ thus ¬ 〈a〉>

.
∈ tρ. The inductive

cases of this induction (disjunction, conjunction, recursion) are immediate as
they correspond to the definition of ·

.
∈ ·.

We next show that for every type tρ and tρa where a is a forward modality,
we have 〈a〉> ∈ tρa and ∆a(tρ, tρa). (Note that, by path normalization, the
types considered may be t12 and t1 for modality 2.) The first condition is
immediate by construction of tρa as f 〈ρa〉 is defined. For the second condition,
let 〈a〉ψ ∈ tρ. If 〈a〉ψ ∈ Φρ, then it occurs in the satisfiability derivation with
an hypothesis fρa ρa ψ. In this case we have ψ

.
∈ tρa by (*). If 〈a〉ψ /∈ Φρ then

it was added during saturation and the result is immediate by construction.
Conversely, if ψ

.
∈ tρa then by saturation we have 〈a〉ψ ∈ tρ. We now consider

the case 〈a〉ψ ∈ tρa. The proof goes exactly as before, distinguishing the case
where the formula is in Φρa and the case where it was added by saturation.

We now show that there is a run of the algorithm that produces these types.
We proceed by induction on the paths in the downward direction: if tρa has been
proven for a partial run for a ∈ {1, 2}, then tρ is proven for the next step of
the algorithm. Moreover, we show that (tρ, {tρ1}, {tρ2}) is marked iff a forward
subtree of f 〈ρ〉 contains the start mark. The base case is for paths with no
descendants, hence no witness is required. The algorithm then adds (tρ, ∅, ∅) to
its set of types, with a mark iff s ∈ tρ, iff f 〈ρ〉 is marked.

We now consider the inductive case. By induction, a partial run of the
algorithm returns tρ1 and/or tρ2. We first show that tρ is returned in the next
step of the algorithm, taking these two types as witnesses. We first remark
that if either witness is marked then the other is not and the mark is not at
f 〈ρ〉, since there is only one start mark in f , and if the mark is at f 〈ρ〉, then
neither witness is marked. For each child a ∈ {1, 2} we have ∆a(tρ, tρa) and
〈a〉> ∈ tρa, hence the triple (tρ,W1,W2) with tρ1 ∈ W1 and tρ2 ∈ W2 is added
by the algorithm.

We may now conclude. At the end of the induction, the last path considered,
ρ0, has no predecessor, hence it is the longest backward only path. Since f 〈ρ0〉
is the root of the tree, we have

〈
1
〉
> /∈ tρ0 and

〈
2
〉
> /∈ tρ0 . Moreover, as the

start mark is somewhere in f , it is in a forward subtree of f 〈ρ0〉, hence the final
type is marked. Finally, tε is in the witness tree of the final type, and since
f ε ϕ, we have ϕ

.
∈ tε. �

Lemma 6.7 (Complexity) For ψ ∈ Lµ the satisfiability problem JψK∅ 6= ∅ is
decidable in time 2O(n) where n = |Lean(ψ)|.

Proof: |Types(ψ)| is bounded by
∣∣2Lean(ψ)

∣∣ which is 2O(n). During each itera-
tion, the algorithm adds at least one new type (otherwise it terminates), thus
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30 Genevès, Layäıda & Schmitt

it performs at most 2O(n) iterations. We now detail what it does at each itera-
tion. For each type that may be added (there are 2O(n) of them), there are two
traversals of the set of types at the previous step to collect witnesses. Hence
there are 2 ∗ 2O(n) ∗ 2O(n) = 2O(n) witness tests at each iteration. Each witness
test involves a membership test and a ∆a test. In the implementation these
are precomputed: for every formula 〈a〉ϕ in the lean, the subsets (T, F ) of the
lean that must be true and false respectively for ϕ to be true are precomputed,
so testing ϕ

.
∈ t are simple inclusion and disjunction tests. The FinalCheck

condition test at most 2O(n) ψ-types and each test takes at most 2O(n) (testing
the formulas containing s against ψ). Therefore, the worst case global time
complexity of the algorithm does not exceed 2O(n). �

7 Implementation Techniques

This section describes the main techniques used for implementing an effective
Lµ decision procedure. More details along with an implementation can be found
at [20].

7.1 Implicit Representation of Sets of ψ-Types

Our implementation relies on a symbolic representation and manipulation of
sets of ψ-types using Binary Decision Diagrams (BDDs) [5]. BDDs provide
a canonical representation of boolean functions. Experience has shown that
this representation is very compact for very large boolean functions. Their
effectiveness is notably well known in the area of formal verification of systems
[11].

First, we observe that the implementation can avoid keeping track of every
possible witnesses of each ψ-type. In fact, for a formula ϕ, we can test JϕK∅ 6= ∅
by testing the satisfiability of the (linear-size) “plunging” formula ψ = µX.ϕ ∨
〈1〉X ∨ 〈2〉X at the root of focused trees. That is, checking JψK0

∅ 6= ∅ while
ensuring there is no unfulfilled upward eventuality at top level 0. One advantage
of proceeding this way is that the implementation only need to deal with a
current set of ψ-types at each step.

We now introduce a bit-vector representation of ψ-types. Types are complete
in the sense that either a subformula or its negation must belong to a type. It is
thus possible for a formula ϕ ∈ Lean(ψ) to be represented using a single BDD
variable. For Lean(ψ) = {ϕ1, ..., ϕm}, we represent a subset t ⊆ Lean(ψ) by a
vector ~t = 〈t1, ..., tm〉 ∈ {0, 1}m such that ϕi ∈ t iff ti = 1. A BDD with m
variables is then used to represent a set of such bit vectors.

We define auxiliary predicates for programs a ∈ {1, 2}:

• isparenta(~t) is read “~t is a parent for program a” and is true iff the bit for
〈a〉> is true in ~t

• ischilda(~t) is read “~t is a child for program a” and is true iff the bit for
〈a〉> is true in ~t

For a set T ⊆ 2Lean(ψ), we note χT its corresponding characteristic function.
Encoding χTypes(ψ) is straightforward with the previous definitions. We define
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Efficient Static Analysis of XML Paths and Types 31

the equivalent of
.
∈ on the bit vector representation:

statusϕ(~t) def=


ti if ϕ ∈ Lean(ψ)
statusϕ′(~t) ∧ statusϕ′′(~t) if ϕ = ϕ′ ∧ ϕ′′
statusϕ′(~t) ∨ statusϕ′′(~t) if ϕ = ϕ′ ∨ ϕ′′
¬statusϕ′(~t) if ϕ = ¬ϕ′
statusexp(ϕ)(~t) if ϕ = µXi = ϕi in ψ

We note a → b the implication and a ↔ b the equivalence of two boolean
formulas a and b over vector bits. We can now construct the BDD of the relation
∆a for a ∈ {1, 2}. This BDD relates all pairs (~x, ~y) that are consistent w.r.t the
program a, i.e., such that ~y supports all of ~x’s 〈a〉ϕ formulas, and vice-versa ~x
supports all of ~y’s 〈a〉ϕ formulas:

∆a(~x, ~y) def=
∧

1≤i≤m

 xi ↔ statusϕ(~y) if ϕi = 〈a〉ϕ
yi ↔ statusϕ(~x) if ϕi = 〈a〉ϕ
> otherwise

For a ∈ {1, 2}, we define the set of witnessed vectors:

χWita(T )(~x) def= isparenta(~x)→ ∃~y [ h(~y) ∧∆a(~x, ~y) ]

where h(~y) = χT (~y) ∧ ischilda(~y).
Then, the BDD of the fixpoint computation is initially set to the false con-

stant, and the main function Upd(·) is implemented as:

χUpd(T )(~x) def= χT (~x) ∨

χTypes(ψ)(~x) ∧
∧

a∈{1,2}

χWita(T )(~x)


Finally, the solver is implemented as iterations over the sets χUpd(T ) until a

fixpoint is reached. The final satisfiability condition consists in checking whether
ψ is present in a ψ-type of this fixpoint with no unfulfilled upward eventuality:

∃~t

 χT (~t) ∧
∧

a∈{1,2}

¬ischilda(~t) ∧ statusψ(~t)


7.2 Satisfying Model Reconstruction

The implementation keeps a copy of each intermediate set of types computed
by the algorithm, so that whenever a formula is satisfiable, a minimal satisfying
model can be extracted. The top-down (re)construction of a satisfying model
starts from a root (a ψ-type for which the final satisfiability condition holds),
and repeatedly attempts to find successors. In order to minimize model size,
only required left and right branches are built. Furthermore, for minimizing the
maximal depth of the model, left and right successors of a node are successively
searched in the intermediate sets of types, in the order they were computed by
the algorithm. For readability purposes, the extracted satisfying model can be
enriched by annotating the start mark s from which XPath evaluation started
and a target node selected by the XPath expression. The annotated model is
then provided to the user in XML unranked tree syntax.
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32 Genevès, Layäıda & Schmitt

7.3 Conjunctive Partitioning and Early Quantification

The BDD-based implementation involves computations of relational products of
the form:

∃~y [ h(~y) ∧∆a(~x, ~y) ] (1)

It is well-known that such a computation may be quite time and space consum-
ing, because the BDD corresponding to the relation ∆a may be quite large.

One famous optimization technique is conjunctive partitioning [11] combined
with early quantification [41]. The idea is to compute the relational product
without ever building the full BDD of the relation ∆a. This is possible by taking
advantage of the form of ∆a along with properties of existential quantification.
By definition, ∆a is a conjunction of n equivalences relating ~x and ~y where n is
the number of 〈b〉ϕ formulas in Lean(ψ) where ϕ 6= > and b ∈ {a, a}:

∆a(~x, ~y) =
n∧
i=1

Ri(~x, ~y)

If a variable yk does not occur in the clauses Ri+1, ..., Rn then the relational
product (1) can be rewritten as:

∃ [
∃yk

[
h(~y) ∧

∧
1≤j≤iRj(~x, ~y)

]
∧
∧
i+1≤l≤nRl(~x, ~y)

]
y1, ..., yk−1, yk+1, ..., ym

This allows to apply existential quantification on intermediate BDDs and
thus to compose smaller BDDs. Of course, there are many ways to compose the
Ri(~x, ~y). Let ρ be a permutation of {0, ..., n − 1} which determines the order
in which the partitions Ri(~x, ~y) are combined. For each i, let Di be the set
of variables yk with k ∈ {1, ...,m} that Ri(~x, ~y) depends on. We define Ei as
the set of variables contained in Dρ(i) that are not contained in Dρ(j) for any j
larger than i:

Ei = Dρ(i) \
n−1⋃
j=i+1

Dρ(j)

The Ei are pairwise disjoint and their union contains all the variables. The
relational product (1) can be computed by starting from:

h1(~x, ~y) = ∃ [
h(~y) ∧Rρ(0)(~x, ~y)

]
yk ∈ E0

and successively computing hp+1 defined as follows:

hp+1(~x, ~y) =


∃ [

hp(~x, ~y) ∧Rρ(p)(~x, ~y)
]

yk ∈ Ep
if Ep 6= ∅

hp(~x, ~y) ∧Rρ(p)(~x, ~y) if Ep = ∅

until reaching hn which is the result of the relational product. The ordering ρ
determines how early in the computation variables can be quantified out. This
directly impact the sizes of BDDs constructed and therefore the global efficiency
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Efficient Static Analysis of XML Paths and Types 33

of the decision procedure. It is thus important to choose ρ carefully. The overall
goal is to minimize the size of the largest BDD created during the elimination
process. We use a heuristic taken from [11] which seems to provide the best
approximation and in practice has the best performance. It defines the cost of
eliminating a variable yk as the sum of the sizes of all the Di containing yk:∑

1≤i≤n,yk∈Di

|Di|

The ordering ρ on the relations Ri is then defined in such a way that variables
can be eliminated in the order given by a greedy algorithm which repeatedly
eliminates the variable of minimum cost.

7.4 BDD Variable Ordering

The cost of BDD operations is very sensitive to variable ordering. Finding the
optimal variable ordering is known to be NP-complete [24], however several
heuristics are known to perform well in practice [11]. Choosing a good initial
order of Lean(ψ) formulas does significantly improve performance. We found
out that preserving locality of the initial problem is essential. Experience has
shown that the variable order determined by the breadth-first traversal of the
formula ψ to solve, which keeps sister subformulas in close proximity, yields
better results in practice.

8 Typing Applications and Experimental Results

For XPath expressions e1, ..., en, we can formulate several decision problems in
the presence of XML type expressions T1, ..., Tn :

• XPath containment: E→Je1KJT1K ∧ ¬E→Je2KJT2K (if the formula is unsat-
isfiable then all nodes selected by e1 under type constraint T1 are selected
by e2 under type constraint T2)

• XPath emptiness: E→Je1KJT1K

• XPath overlap: E→Je1KJT1K ∧ E→Je2KJT2K

• XPath coverage: E→Je1KJT1K ∧
∧

2≤i≤n ¬E→JeiKJTiK

Two problems are of special interest for XML type checking:

• Static type checking of an annotated XPath query:
E→Je1KJT1K ∧¬JT2K (if the formula is unsatisfiable then all nodes selected
by e1 under type constraint T1 are included in the type T2.)

• XPath equivalence under type constraints:
E→Je1KJT1K ∧ ¬E→Je2KJT2K and ¬E→Je1KJT1K ∧E→Je2KJT2K (This test can
be used to check that the nodes selected after a modification of a type T1

by T2 and an XPath expression e1 by e2 are the same, typically when an
input type changes and the corresponding XPath query has to change as
well.)
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34 Genevès, Layäıda & Schmitt

e1 /a[.//b[c/*//d]/b[c//d]/b[c/d]]
e2 /a[.//b[c/*//d]/b[c/d]]

e3 a/b//c/foll-sibling::d/e
e4 a/b//d[prec-sibling::c]/e
e5 a/c/following::d/e
e6 a/b[//c]/following::d/e ∩ a/d[preceding::c]/e

e7 *//switch[ancestor::head]//seq//audio[prec-sibling::video]

e8 descendant::a[ancestor::a]
e9 /descendant::*
e10 html/(head p body)
e11 html/head/descendant::*
e12 html/body/descendant::*

Figure 21: XPath Expressions Used in Experiments.

DTD Symbols Binary Type Variables
SMIL 1.0 19 11
XHTML 1.0 Strict 77 325

Table 1: Types Used in Experiments.

As no third-party implementation we know of addresses reverse axes and
recursion, we simply provide evidence that our approach is efficient. We car-
ried out extensive tests2 [20] , and present here only a representative sample
that includes the most complex language features such as recursive forward and
backward axes, intersection, large and very recursive types with a reasonable
alphabet size. The tests use XPath expressions shown on Figure 21 (where “//”
is used as a shorthand for “/desc-or-self::*/”) and XML types shown on Table 1.
Table 2 presents some decision problems and corresponding performance results.
Times reported in milliseconds correspond to the running time of the satisfia-
bility solver without the (negligible) time spent for parsing and translating into
Lµ.

The first XPath containment instance was first formulated in [35] as an exam-
ple for which the proposed tree pattern homomorphism technique is incomplete.
The e8 example shows that the official XHTML DTD does not syntactically pro-
hibit the nesting of anchors. For the XHTML case, we observe that the time
needed is more important, but it remains practically relevant, especially for
static analysis operations performed only at compile-time.

9 Related Work

The XPath containment problem has attracted a lot of research attention in
the database community [35, 39, 42]. The focus was given to the study of the
impact of different XPath features on the containment complexity (see [42] for an

2Experiments have been conducted with a JAVA implementation running on a Pentium 4,
3 Ghz, with 512Mb of RAM with Windows XP.
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Efficient Static Analysis of XML Paths and Types 35

XPath Decision Problem XML Type Time (ms)
e1 ⊆ e2 and e2 6⊆ e1 none 353
e4 ⊆ e3 and e4 ⊆ e3 none 45
e6 ⊆ e5 and e5 6⊆ e6 none 41
e7 is satisfiable SMIL 1.0 157
e8 is satisfiable XHTML 1.0 2630

e9 ⊆ (e10 ∪ e11 ∪ e12) XHTML 1.0 2872

Table 2: Some Decision Problems and Corresponding Results.

overview). Specifically, [39] proves an EXPTIME upper-bound (in the presence
of DTDs) of queries containing the “child” and “descendant” axes, and union
of paths. The complexity of XPath satisfiability in the presence of DTDs also is
extensively studied in [3]. From these results, we know that XPath containment
with or without type constraints ranges from EXPTIME to undecidable.

Most formalisms used in the context of XML are related to one of the two
logics used for unranked trees: first-order logic (FO), and Monadic Second Or-
der Logic (MSO). FO and relatives are frequently used for query languages since
they nicely capture their navigational features [2]. For query languages, Compu-
tational Tree Logic (CTL) [7] , which is equivalent to FO over tree structures has
been proposed [35, 33, 2]. In a attempt to reach more expressive power, the work
found in [1] proposes a variant of Propositional Dynamic Logic (PDL) [15] with
an EXPTIME complexity. MSO, specifically the weak monadic second-order
logic of two successors (WS2S) [44, 10], is one of the most expressive decid-
able logic used when both regular types and queries [2] are under consideration.
WS2S satisfiability is known to be non-elementary. A drawback of the WS2S
decision procedure is that it requires the full construction and complementation
of tree automata.

Some temporal and fixpoint logics closely related to MSO have been intro-
duced and allow to avoid explicit automata construction. The propositional
modal µ-calculus introduced in [30] has been shown to be as expressive as non-
deterministic tree automata [12]. Since it is trivially closed under negation, it
constitutes a good alternative for studying MSO-related problems. Moreover,
it has been extended with converse programs in [46]. The best known com-
plexity for the resulting logic is obtained through reduction to the emptiness
problem of alternating tree automaton which is in 2O(n4·log n), where n corre-
sponds to the length of a formula [23]. Unfortunately the logic lacks the finite
model property. From [31], we know that WS2S is exactly as expressive as the
alternation-free fragment (AFMC) of the propositional modal µ-calculus. Fur-
thermore, the AFMC subsumes all early logics such as CTL [7] and PDL [15]
(see [2] for a complete survey on tree logics). In [34], the author considers XPath
equivalence under DTDs (local tree types) for which satisfiability is shown to
be in EXPTIME.

The goal of the research presented so far is limited to establishing new the-
oretical properties and complexity bounds. Our research differs in that we seek
precise complexity bounds, efficient implementation techniques, and concrete
design that may be directly applied to the type checking of XPath queries un-
der regular tree types.
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36 Genevès, Layäıda & Schmitt

In this line of research, some experimental results based on WS2S, through
the Mona tool [29], have recently been reported for XPath containment [19]and
even for query evaluation [28]. However, for static analysis purposes, the explo-
siveness of the approach is very difficult to control due to the non-elementary
complexity. Closer to our contribution, the recent work found in [43] provides
a decision procedure for the AFMC with converse whose time complexity is
2O(n·log n). However, models of the logic are Kripke structures (infinite graphs).
Enforcing the finite tree model property can be done at the syntactic level [43],
and this has been further developed in the XML setting in [18]. Nevertheless,
the drawback of this approach is that the AFMC decision procedure requires
expensive cycle-detection for rejecting infinite derivation paths for least fixpoint
formulas. Furthermore, there is a fundamental difference between this approach
and the algorithm presented in this article. The algorithm of [43] used in [18]
actually computes a greatest fixpoint: it starts from all possible (graph) nodes
and progressively removes all inconsistent nodes until a fixpoint is reached. Fi-
nally, if the fixpoint contains a satisfying (tree) structure then the formula is
satisfiable. As a consequence, unlike the algorithm presented in this article,
(1) the algorithm must always explore all nodes, and (2) it cannot terminate
until full completion of the fixpoint computation (otherwise inconsistencies may
remain). The present work shows how this can be avoided for finite trees. As a
consequence, the resulting performance is much more attractive. In an earlier
work on XML type checking, a logic for finite trees was presented [45], but the
logic is not closed under negation.

In [8], a technique is presented for statically ensuring correctness of paths.
The approach only deals with emptiness of XPath expressions without reverse
axes, whereas our approach solves the more general problem of containment,
including reverse axes.

The work [37] presents an approximated technique that is able to statically
detect errors in XSLT stylesheets. Their approach could certainly benefit from
using our exact algorithm instead of their conservative approximation. The
XDuce [25], CDuce [4], and XStatic [16] languages support pattern-matching
through regular expression types but not XPath. Although some recent work
shows how to translate XPath into Xtatic [17], the XPath fragment considered
does not include reverse axes nor negation in qualifiers. A survey on existing
research on statically type checking XML transformations can be found in [36].

10 Conclusion

The main result of our paper is a sound and complete algorithm for the satisfia-
bility of decision problems involving regular tree types and XPath queries with
a tighter 2O(n) complexity in the length of a formula. Our approach is based
on a sub-logic of the alternation-free modal µ-calculus with converse for finite
trees.

Our proof method reveals deep connections between this logic and XPath
decision problems. First, the translations of XML regular tree types and a
large XPath fragment are cycle-free and linear in the size of the corresponding
formulas in the logic. Second, on finite trees, since both operators are equivalent,
the logic with a single fixpoint operator is closed under negation. This allows to
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Efficient Static Analysis of XML Paths and Types 37

address key XPath decision problems such as containment. The current solver
can also support conditional XPath proposed in [34].

Finally, there are a number of interesting directions for further research
that build on ideas developed here: extending XPath to restricted data values
comparisons that preserves this complexity, for instance data values on a finite
domain, and integrating related work on counting [9] to our logic. We also plan
on continuing to improve the performance of our implementation.
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