
On the Analysis of Queries with Counting Constraints∗

Everardo Bárcenas
INRIA

Everardo.Barcenas-
Patino@inria.fr

Pierre Genevès
CNRS

Pierre.Geneves@inria.fr

Nabil Layaïda
INRIA

Nabil.Layaida@inria.fr

ABSTRACT
We study the analysis problem of XPath expressions with
counting constraints. Such expressions are commonly used
in document transformations or programs in which they se-
lect portions of documents subject to transformations. We
explore how recent results on the static analysis of naviga-
tional aspects of XPath can be extended to counting con-
straints. The static analysis of this combined XPath frag-
ment allows to detect bugs in transformations and to per-
form many kinds of optimizations of document transforma-
tions. More precisely, we study how a logic for finite trees
capable of expressing upward and downward recursive nav-
igation, can be equipped with a counting operator along
regular path expressions.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—Query Lan-
guages; F.4.1 [Mathematical Logic and Formal Lan-
guages]: Mathematical Logic—modal logic

General Terms
Algorithms, Languages, Theory, Verification

Keywords
XML, XPath, Type Checking, Counting Constraints, Modal
Logics

1. INTRODUCTION
Since its introduction a decade ago, Extensible Markup

Language XML, has gained considerable interest from in-
dustry and now plays a central role in modern information
system infrastructures. Originally introduced to represent
document classes, it became the key technology for describ-
ing and exchanging a wide variety of data on the Web. The

∗This work has been partially funded by Agence Nationale
de la Recherche, decision ANR-08-DEFIS-004.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’09, September 16–18, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-575-8/09/09 ...$5.00.

essence of XML consists in organizing information in tree-
tagged structures conforming to some constraints expressed
using standard type languages such as DTDs, XML schemas
and Relax NG.

In the context of document engineering, XML processing
can be seen as transforming theses structures using tree-
oriented query languages such as XPath expressions and
XQuery within full blown transformation languages such as
XSLT. The main purpose of such tasks consists in produc-
ing formatted views, generate indexes and tables of contents,
etc., of such document or converting them from one format
to another. Such tasks can also be pipelined using other
technologies such as XProc resulting in complex processes
where the potential of failures increases.

One of the biggest challenges for such processing chains is
to ensure their correctness and efficiency automatically. One
kind of correctness is central for document manipulations is
the type or schema safety. It consists in providing guarantees
that a given transformation yields always valid documents
(w.r.t. some schema) when the input is also valid (w.r.t.
some schema). Static type safety analysis and optimization
consists in providing such guarantees or optimizations at
compile time or prior to execution when the language is
interpreted.

To this end, there is a need to solve some basic analy-
sis tasks involving very complex constructions such as XML
types (regular tree types) and powerful navigational primi-
tives (XPath queries). In particular, every future XML pro-
gram or XSLT transformation analyzer will have to routinely
solve problems such as:

• XPath query emptiness in the presence of a schema:
if one can decide at compile time that a query is not
satisfiable then subsequent bound computations can
be avoided,

• query equivalence, which is important for query refor-
mulation and optimization,

• path type-checking, for ensuring at compile time that
invalid documents can never arise as output of XML
processing code.

The main difficulty in such decision problems is that the
analysis of paths must be performed against a possibly infi-
nite set of trees. This is because document instances against
which paths need to be evaluated are not known during pro-
gram or transformation analysis. In addition, other impor-
tant features increase the difficulty of solving such problems

or make them intractable: upward and downward naviga-
tion, comparisions of data values of infinite domains such as
value joins and general cardinality constraints on node sets.

The computational cost of analysis considering combina-
tions of some of such features or all of them, ranges from
polynomial to undecidable [2, 8]. The cost of the analysis of
the full navigational aspect of XPath is known [5, 2] to be
EXPTIME.

XML type languages such as XML Schema and DTDs im-
posed certain structure restrictions on the possible sequences
of children. Such restrictions are known to be expressible by
means of regular expressions, that is, XML types are subsets
of regular tree types [7]. Among the structure restrictions of
regular tree types we find numerical restrictions on the num-
ber of children (direct siblings). Such simple restrictions can
be expressed in terms of regular tree types but at the cost
of an exponential blow-up in the size of the expressions. For
example, to impose that the regular expression e = a∗ba∗

contains at least two elements a, one would need to express
it as e = aaa∗ba∗|aa∗baa∗|a∗baaa∗. The blow-up is even
worse when considering regular tree types since element oc-
currences need to be considered at different locations of the
tree.

Related work and contributions
Among the recent and most expressive formalisms to reason
about finite trees, we find [10, 5]. [10] proposes a modal logic
capable of expressing both, downward and upward recursive
navigation with a computational cost of 2O(n logm), where
n is the size of a formula and m is the number of modal
cycles in the scope of least fixpoints. In [5], this bound is

improved to 2O(n) and a linear translation of XPath and reg-
ular tree types into the logic is also presented. In addition,
an efficient BDD-based implementation of the satisfiability-
checking algorithm together with XPath analysis task per-
formance evaluations are given. The extensions explored in
this paper are partly based on the results of [5].

Close in spirit to this work, a modal logic is introduced in
[4], called sheaves logic, where cardinality constraints can be
set on children nodes, that is, restrictions like p1 nodes have
no more ”children” than p2 nodes, are expressible by this ap-
proach. [9] introduces a fixpoint presburger logic, such that,
besides cardinality constraints on children, recursive down-
ward navigation is also allowed, that is, expressions like the
descentants of p1 nodes have no more “children” than the de-
scendants of p2 nodes, are allowed. These approaches pro-
vide highly expressive logics but, on the other hand, count-
ing is limited to children nodes. More specifically, the notion
of context is limited to the parent node of counted nodes.

In [1], the logic in [5] is extended to express cardinality
constraints, w.r.t a constant, on the whole tree rather than
from particular nodes in the document, without an extra
computational cost. Recursive upward and downward nav-
igation can be imposed succinctly in numerical constraints,
for example, there are no more than 5 p1 nodes with either a
descendant or an ancestor named p2, is succintly expressible
in such logic.

The more general problem which consists in considering
full presburger arithmetic [6] in path expressions and re-
cursive upward/downward navigation in trees would lead to
undecidability [6]. In order to balance expressivity and ef-
ficiency, in Section 2, we propose a modal logic with the
following distinctive features:

Φ 3 φ := Formulas

p propositions

| x variable

| > true symbol

| ¬φ negation

| φ1 ∧ φ2 conjunction

| φ1 ∨ φ2 disjunction

| 〈m〉φ modality

| µx.φ fixpoint

| (φ1
α−→ φ2) ≤ k counting

Figure 1: Formula syntax

• recursive upward/downward navigation;

• cardinality constraints, w.r.t. constants, using recur-
sive multidirectional paths, that is, expressions like the
preceding siblings of the p2 descendants of p1 nodes are
more than 5, are allowed.

In Section 2, we sketch a tableau-based satisfiability-checking
algorithm with an optimal simple exponential time complex-
ity for such a logic. In Section 3, by means of a linear trans-
lation of XPath expressions into the logic, we identify a de-
cidable fragment of the XPath language where cardinality
constraints are allowed. Regular tree types, with numerical
restrictions on children, are also supported (Section 3), lead-
ing to a highly expressive and efficient reasoning framework
for XPath decision problems under type constraints.

2. DEEP COUNTING TREE LOGIC
We consider a µ−calculus-based logic, as first introduced in

[5], extended with a counting operator to restrict node cardi-
nalities w.r.t. to a constant. The syntax of the logic is given
on Figure 1. A formula is interpreted as a set of nodes in a
finite binary tree (there is a well known bijective encoding
between n−ary unranked trees and binary trees [5]). Propo-
sitions denote the nodes where they occur. Negations is
interpreted as set complement, conjunction and disjunction
of formulas are interpreted as union and intersection of sets,
respectively. Modal formulas denote the transition relations
(first child, sibling, parent) among nodes. The least fixpoint
operator performs finite recursive navigation. Counting for-
mulas (φ1

α−→ φ2) ≤ k denote the nodes satisfying φ1, such
that there is a trail α from them leading to no more than k
nodes satisfying φ2.

For example, the formula φ denoting p1 nodes with at least
one ancestor named p2 is written p1∧〈1〉µx.p2∨〈1〉x∨〈2〉x.
Now, if we want to express the nodes satisfying φ with no

more than 2 descendants named p3, we can write (φ
1,(1|2)?

−→
p3) ≤ 2.

It is not hard to observe that the greater than operator
(>) and the equality operator can be easily defined from the
less or equal operator (≤).

One may also be interested in a slightly different manner
of counting called global counting (as studied in [1]). Global
counting simply consists in counting the number of nodes
where a formula φ holds, independently from any context.

SS ← Nφ

ST ← ∅
repeat
AUX ← {(n,Γ1,Γ2) | Rφ(n, i) = root(Γi), n ∈
SS,Γi ∈ ST, i = 1, 2}
if AUX = ∅ then

return 0
end if
ST ← ST ∪AUX
SS ← SS \ nodes(root(AUX))

until ST ` φ
return 1

Figure 2: Satisfiability-Checking Algorithm

A global counting formula φ ≤ k is intended to denote all
the nodes in the tree where φ holds whenever the number
of nodes satisfying φ is less or equal than k; otherwise, the
formula denotes the empty set. It is worth noticing that
any global counting formula can be expressed in terms of a
local counting formula as introduced on Figure 1. For this
purpose, we denote the whole set of nodes by the formula >,
from each of them we navigate to any other node, by means
of the trail (1 | 2)?, (1, 2)?, in order to count the number of
nodes where the formula in question holds. Hence, we define
for # ∈ {≤, >,=}:

φ#k ≡ ((> (1|2)?,(1,2)?

−→ φ)#k) ∧ φ

Formulas like (φ1
α−→ φ2) ≤ k give additional expressiv-

ity over global counting, since they can take any context
into account. Nodes in a specific region of the tree can be
counted from any other location in the tree. This additional
expressive power – very useful in practice – makes the deci-
sion procedure for the extended logic even more challenging.
In the next section, we report on our research in progress,
toward obtaining an efficient satisfiability-testing algorithm.

Satisfiability
The major difficulty consists in extending the satisfiability
algorithm proposed in [5] to deal with a satisfaction rela-
tion for counting formulas. The approach we take is to
define this relation inductively from the satisfaction rela-
tion of non-counting formulas and a compatibility transi-
tion relation among nodes. We sketch below a tableau-based
satisfiability-checking algorithm for the logic, based on this
idea.

There are two main tasks for such an algorithm: first,
enumerating all candidate satisfying trees, and second, eval-
uating each tree against the formula in question. The can-
didate trees are built in a bottom-up manner, that is, from
the leaves to the root. We begin by considering all possible
leaves, then in the iteration step, we find a parent for the
trees considered in previous steps. After each iteration, we
check if we obtain a satisfying tree. When no more parents
can be added, if no satisfying tree was found, then we say
the formula is unsatisfiable. A sketch of the satisfiability
algorithm is given in Figure 2 as a boolean function, with a
formula as input. The algorithm outputs 1 whenever the for-
mula is satisfiable, and 0 otherwise. A major difference with
the algorithm of [5] is that multisets are involved in order to
perform counting. In Figure 2: Nφ is the multiset of all pos-
sible nodes needed to build a satisfying tree, ST is a multiset

p1 p2 p3 . . . p2 . . .

p2

p1

1

2

Figure 3: Graphical run of the satisfiability algo-

rithm for (p1
(1,2?)?

−→ p2) > 1

of candidate trees (triples (r, T1, T2), where r is the root, and
T1 and T2 are its left and right subtree, resp.), Rφ(n, n′) =
is a compatibility transition relation among nodes, and ` is
a satisfaction relation of formulas against a tree.

As for the logic proposed in [5], the current logic enjoys the
small model property, requiring at most 2n nodes (where n
is the formula size) in a satistying tree, turning out to be the
key factor in the computational cost of the whole algorithm.

Figure 3 illustrates a run of the algorithm on a simple
formula which is found satisfiable at step 3 of the algorithm.

3. XML PATHS AND TYPES
This section presents a large fragment of the XPath rec-

ommendation [3], as well as a linear translation of XPath
expressions into the logic. The principles for translating reg-
ular tree types (that capture most XML schemas, DTDs and
Relax NGs in use today) into the logic are also explained.

XPath
XPath is a highly expressive language for describing queries
with a simple and elegant syntax. Basic XPath expressions
have the form a :: p, such expressions can be composed,
leading to expressions with the form ρ1/ρ2. XPath expres-
sions can also be filtered by the so-called qualifiers, forming
expressions like ρ[q]. The qualifiers are themselves path ex-
pressions additionally composed by logical connectives (con-
junction, disjunction, negation) and counting operators.

The expressions a :: p denote the nodes named p accessible
by a navigation axis denoted by a. Such a navigation allows
to reach not only neighbor nodes (parent or children), but
also descendants or even ancestor nodes. The composition of
expressions denotes consecutive navigation steps. For exam-
ple, the expression self :: p1/descendant :: p2 denotes, in a
given tree, all the nodes labeled by p2 which are descendants
of nodes labeled by p2. Qualifiers act as filters: they can be
viewed as boolean functions. If a path expression evaluates
to at least one node then, when interpreted as a qualifier,
it is true. For example, the expression self :: p1[child :: p2]
denotes the p1 nodes which have at least one p2 child. When
the qualifiers are conjuncted, disjuncted or negated, they are
interpreted as expected. Also, when a path is restricted by
an occurrence number, by means of a counting operator, its
semantics behaves as naturally expected. For example, the
expression self :: p1[child :: p2 ≤ 5] denotes the p1 nodes

with no more than 5 children named p2.
We now introduce a linear translation of XPath expres-

sions into the logic. A basic XPath expression a :: p is
translated as the proposition conjuncted with a fixpoint for-
mula that navigates as required by a. For example, child :: p
is translated as p ∧ µx.〈1〉ξ ∨ 〈2〉x, where ξ is an arbitrary
formula denoting a context. The composition of paths ρ1/ρ2

is translated as the translation of ρ2 with the translation of
ρ1 as context. As for qualified paths ρ[q], when the qual-
ifier is path ρ′, such path is translated as its inverse, that
is, instead of denoting the nodes reachable from a context
by means of ρ′, it will denote such context nodes. For ex-
ample, the expression self :: p1[child :: p2] is translated as
ξ ∧ p1 ∧ 〈1〉µx.ξ ∨ 〈2〉x, for a context ξ. The conjunction,
disjunction and negation of qualifiers is translated as ex-
pected. When the qualifier is a constrained path ρ ≤ k, it
is translated as the counting formula (ξ

α−→ φρ) ≤ k, where
ξ is the context, α contains the navigational information
of ρ, that is, the composition of the interpretation of axis
as trails, and φρ is the translation of a path resulting after
the extraction of navigational information of ρ. For exam-
ple, the expression self :: p1[child :: p2 ≤ 5] is translated as

p1 ∧ (> 1,2∗−→ p2) ≤ 5. For further details on the translation,
we refer the reader to [5, 1].

Regular Tree Types
In this work we consider the binary representation of un-
ranked trees and use the corresponding binary version of reg-
ular tree types, as introduced in [5]. In their basic form, bi-
nary regular tree types are defined by labels (propositions),
empty sequences, and variables. From such basic forms we
can build tree types by composition, alternation and an op-
erator for recursion. Detailed formal syntax and restrictions
can be found in [5].

The interpretation of types is a set of finite trees w.r.t.
a set of propositions and variables. The variables are also
interpreted as sets of trees. Empty sequences denote the
absence of subtrees. A labeled composition p(x1, x2) denotes
the trees rooted by p nodes with the interpretation of x1 and
x2 as left and right subtrees, resp. The alternation of types
is interpreted as set union. A specific operator is intended
to allow recursive definition of types. A n−ary version of
this operator was chosen so that several type variables can
be bound at a time, in order to avoid blow-ups in the size
of the types when mutually recursive definitions occur.

In some schema languages there are operators for con-
straining the number of type occurrences.1 For example, in
order to fix the occurrence of labeled composition we may
define:

p(x1, x2)=0 = ()

p(x1, x1)=k = p(x1, p(x1, x2)=k−1) where k > 0

In order to avoid the blow-up in the size of type expres-
sions where cardinality constraints are present, we extend
the translation of regular tree types (provided in [5]) by di-
rectly translating counting type expressions into formulas

(> 2∗−→ φ)#k, where φ is the translation of the type we want
to constraint. Since the translations of both XPath expres-
sions and regular tree types are linear, we ended-up with an

1The W3C XML Schema recommendation notably defines
two attributes minoccur and maxoccur for this purpose.

efficient decision procedure for XPath problems where XML
types may be present.

4. CONCLUSION
We have proposed a modal logic to reason about finite

trees where cardinality constraints on nodes (expressed by
regular recursive paths) can be used in path expressions.
We sketched a satisfiability-checking algorithm for the logic,
with no increase in computational complexity compared to
the logic without the counting operator. This allows to ad-
dress the static analysis of XML transformations on a larger
fragment of XPath than prior work on the subject. In addi-
tion, we take into account cardinality constraints on regular
tree type expressions extending the scope of the analysis to
paths under such constraints. We are currently implement-
ing the satisfiability algorithm and generalizing this counting
approach to other types of counting expressions.

5. REFERENCES
[1] E. Bárcenas, P. Genevès, and N. Layäıda. Counting in

trees along multidirectional regular paths. In
PLAN-X’09, January 2009.

[2] M. Benedikt, W. Fan, and F. Geerts. XPath
satisfiability in the presence of DTDs. J. ACM,
55(2):1–79, 2008.

[3] J. Clark and S. DeRose. XML path language (XPath)
version 1.0. W3C recommendation, November 1999.
http://www.w3.org/TR/1999/REC-xpath-19991116.

[4] S. Dal-Zilio, D. Lugiez, and C. Meyssonnier. A logic
you can count on. SIGPLAN Not., 39(1):135–146,
2004.

[5] P. Genevès, N. Layäıda, and A. Schmitt. Efficient
static analysis of XML paths and types. In PLDI ’07,
pages 342–351, New York, NY, USA, 2007. ACM
Press.

[6] F. Kladtke and H. Ruess. Parikh automata and
modanic second-order logics with linear cardinality
constraints. In Technical Report 177. Institute of CS
at Freiburg University, 2002.

[7] M. Murata, D. Lee, M. Mani, and K. Kawaguchi.
Taxonomy of XML schema languages using formal
language theory. ACM Trans. Internet Techn.,
5(4):660–704, 2005.

[8] F. Neven and T. Schwentick. Xpath containment in
the presence of disjunction, dtds, and variables. In
D. Calvanese, M. Lenzerini, and R. Motwani, editors,
ICDT, volume 2572 of LNCS, pages 312–326.
Springer, 2003.

[9] H. Seidl, T. Schwentick, A. Muscholl, and
P. Habermehl. Counting in trees for free. In J. Dı́az,
J. Karhumäki, A. Lepistö, and D. Sannella, editors,
ICALP, volume 3142 of LNCS, pages 1136–1149.
Springer, 2004.

[10] Y. Tanabe, K. Takahashi, M. Yamamoto, A. Tozawa,
and M. Hagiya. A decision procedure for the
alternation-free two-way modal mu-calculus. In
B. Beckert, editor, TABLEAUX, volume 3702 of
LNCS, pages 277–291. Springer, 2005.

