
Audio Engineering Society

Convention Paper
Presented at the 127th Convention

2009 October 9–12 New York, NY, USA

The papers at this Convention have been selected on the basis of a submitted abstract and extended precis that have been peer
reviewed by at least two qualified anonymous reviewers. This convention paper has been reproduced from the author's advance
manuscript, without editing, corrections, or consideration by the Review Board. The AES takes no responsibility for the contents.
Additional papers may be obtained by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New
York, New York 10165-2520, USA; also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof,
is not permitted without direct permission from the Journal of the Audio Engineering Society.

An Interactive Audio System for Mobiles
Yohan Lasorsa1, Jacques Lemordant1

1 INRIA Rhône-Alpes, France
{yohan.lasorsa, jacques.lemordant}@inria.fr

ABSTRACT

This paper presents an XML format for embedded interactive audio, deriving from well-established formats like
iXMF and SMIL. We introduce in this format a new paradigm for audio elements and animations synchronization,
using a flexible event-driven system in conjunction with graph description capabilities to replace audio scripting.
The concepts of this new format are explained through the building of a virtual interactive jungle environment. Then
we have implemented a sound manager for J2ME smartphones and the iPhone. Guidance applications for blind
people based on this audio system are being developed.

1. INTRODUCTION

Generating audio by using digital chunks is a way to
build a soundtrack, which is extensively used for
console or PC games. It is now also possible on mobiles
due to the presence of powerful mixers for digital audio.
But for that, we need a format for interactive audio. We
will show in this paper how an XML format for 3D and
interactive audio on mobiles can be designed. This
format will be called AMML, standing for
Advanced/Audio Multimedia Markup Language. The
grammar of the format will be defined by a schema, In
order to use this format, soundtrack managers have been
built for the iPhone and J2ME phones.

2. AN XML INTERACTIVE AUDIO FORMAT

In 1999, the Interactive Audio Special Interest Group
(IASIG) published an Interactive 3D Audio Rendering
Guideline Level 2.0 (I3DL2) [1]. Then in 2005, the
Synchronized Multimedia Activity of the World Wide
Web Consortium (W3C) designed the Synchronized
Multimedia Integration Language version 2.0 (SMIL
2.0) [2] for choreographing multimedia presentations
where audio, video, text and graphics are combined in
real time. More than eight years after the completion of
the I3DL2 guidelines, the IASIG announced the
completion of a new interactive audio file format to
complement I3DL2. This new format, based on the
open-standard XMF file format, is called Interactive
XMF (iXMF) [3]. The goal of the IASIG in designing
this format is to put artistic control into the hands of the
artists, keep programmers from having to make artistic

AES

Lasorsa, Lemordant An Interactive Audio System for Mobiles

AES 127th Convention, New York, NY, USA, 2009 October 9–12

Page 2 of 9

decisions, eliminate rework for porting to new
platforms, and reduce production time, cost, and stress.

2.1. Why XML?

iXMF is a complex file format with a structured model
and scripting. It is a powerful tool, but also a difficult
one to implement on mobiles. iXMF is not an XML-
based language as SMIL is. The advantage of using an
XML format to specify 3D and interactive audio is that
many tools exist to transform, edit and adapt XML
documents. Moreover, an XML format can be used as a
generic design format read by sound managers in Java
code for J2ME phones or C code for smartphones.
Another advantage is that graphical editors for audio
composers can be developed more easily, by using the
XML format as a serialisation mechanism.

2.2. Composite documents

With the advent of XML namespaces, it has become
common to see multi-namespace XML documents, also
called compound documents. Content authors use
multiple namespaces to segregate content and to
validate specific portions of a document against one set
of constraints, and other portions against another one.
Compound documents are especially useful for audio
mobile applications, because localization is a key
characteristic of mobility. Information related to
localization is always described through the use of XML
languages like Keyhole Markup Language (KML) [4] or
OpenStreetMap (OSM) [5] among others. By using an
audio language inside a geographical description
language we can build sophisticated interactive 3D
soundscape, useful in many mobile applications like
audio guides and outdoor games for example.

3. INTRODUCING AMML

The description of the concepts of a new language
might seem obscure until their application on a concrete
example. Thus we have chosen to explain the various
aspects of AMML through the progressive building of
the Leonard J. Paul’s interactive jungle [6] example.
The basic idea of this application is to create a
continuous soundtrack for an immersive jungle
environment of a game, based on short samples of
natural and animal sounds reacting to the player’s
actions. We will see then how the elements of our
language can be used to resolve the problems posed in
such a situation.

3.1. The audio hierarchy

When starting with any new audio related tool, the most
important thing to know is how are organized and
mixed the sounds. Our global audio system is divided in
a 4-level hierarchy (fig. 1) inspired by iXMF, with some
noticeable differences.

Figure 1 The AMML audio hierarchy

The most basic audio element of our hierarchy is the
sound: a simple container for an audio file. Then we
have the chunk, an audio fragment made from one or
many sounds, or only a part of it. Each time a chunk is
requested to play, if it contains multiple sounds, one is
picked based on the rules defined. Sounds can be picked
in order or randomly, excluding last played sound or
not, and the chance of picking a particular sound over
the others can be adjusted. On top of that, the cue is an
identified container for a sequence of one or more
chunks, which can be directly managed by the audio
artist to be started and stopped when needed. Cues are
the most important elements to the audio artist as they
represent the directly playable soundtrack elements. The
3-level audio hierarchy of cues was designed to be
simple, effective and adaptable to most situations, while
leaving space for creativity. Like in a traditional mixing
console, mix groups can be used to regroup multiple
cues and apply mix parameters on all of them at the
same time. In our format, we called them sections as, in
addition to mixing multiple cues, they can also be used
to add DSP effects and locate the audio in a virtual 3D
environment. The main difference with traditional mix
groups is that a cue can be a member of multiple

Lasorsa, Lemordant An Interactive Audio System for Mobiles

AES 127th Convention, New York, NY, USA, 2009 October 9–12

Page 3 of 9

sections, and the effects of all of them will apply,
making sections very versatile. We will now see how to
take advantage of all these elements to build the base of
our jungle soundtrack.

3.1.1. Defining audio cues
First, we need to decide what entities will be part of our
virtual jungle. For the natural part, we would like a river
and wind ambiance, and for the animal part, crickets,
flies, birds and monkeys. To create the river ambiance,
we use 6 short samples that we split into 2 chunks:

<cue id="river" loopCount="-1">
 <chunk pick="exclusiveRandom"
fadeOutType="crossfade" fadeOutDur="0.5s">
 <sound src="/river_1-1.wav"/>
 <sound src="/river_1-2.wav"/>
 <sound src="/river_1-3.wav"/>
 </chunk>
 <chunk pick="exclusiveRandom"
fadeOutType="crossfade" fadeOutDur="0.5s">
 <sound src="/river_2-1.wav"/>
 <sound src="/river_2-2.wav"/>
 <sound src="/river_2-3.wav"/>
 </chunk>
</cue>

The cue is set to loop indefinitely, and will play the
chunks one after the other, so to create a seamless
transition between them, we set the chunks to use a
crossfade transition. We don’t want our river ambiance
to be repetitive thus each chunk will randomly chose a
new sound each time it is played, excluding the previous
one. A similar approach is used to define the cue for the
wind ambiance. Concerning the animals, the mechanics
are quite different as we do not want this time a
continuous and seamless ambiance, but randomly
triggered and spaced animal sounds of various duration.
The cue for the crickets can then be organized with a
single chunk containing variations of cricket sounds:

<cue id="crickets" dur="rand(3, 10)s">
 <chunk pick="random" fadeInType="simplefade"
fadeInDur="0.5s" fadeOutType="simplefade"
fadeOutDur="0.5s">
 <sound src="/crickets_1.wav" pickPriority="3"/>
 <sound src="/crickets_2.wav" pickPriority="2"/>
 <sound src="/crickets_3.wav" pickPriority="1"/>
 <sound src="/crickets_4.wav" pickPriority="1"/>
 </chunk>
</cue>

This time, each time the cue is started, a random cricket
sound with duration between 3 and 10 seconds is
played. Because we want some sounds to be played
more frequently than other, we have changed the
picking rules slightly: a sound with a pick priority of 3
will have 3 times more chance to be chosen than a
sound with a value of 1. You can notice that we are only
interested here with the methods to organize audio

within our hierarchy, triggering parameters, controls
over the resulting sound and instances will be detailed
in later sections. As cues for other animals use a similar
scheme, let’s have a look now on the mixing part of
those cues.

3.1.2. Mixing the cues

Once the cues are designed, the next important step it to
specify how they are mixed together. The mixing
concept used in our format is quite particular, due to the
versatility of the sections, the top level elements of our
audio hierarchy. A cue can be a member of multiple
sections, but how exactly the effects of these sections
are applied on a cue? The 2D (volume and panoramic)
and 3D mix parameters of a section acts like a macro
control on all its cues. When a cue is a member of more
than one section (like cue 2 in the figure below) the 2D
mix parameters are multiplied, but the 3D mix
parameters are overridden by the last section defining
them. At this point the cues still have distinct audio
channels. Then the “real” mix of these channels occurs
when routing the cues to the DSP of the sections.
Several DSP inside a section are connected serially. But
when a cue is a member of multiple sections, its signal
is split and routed to the DSP sets of each section,
resulting in a parallel processing (fig. 2).

Figure 2 Sections signal processing

Therefore, the flexibility of the sections allows creative
and complex audio mix using simple and
straightforward definitions. Note that cues which are not
members of any section are directly sent to the master
section for the final mix.
Considering our interactive jungle soundtrack, here is an
example configuration for the mix of our audio scene:

Lasorsa, Lemordant An Interactive Audio System for Mobiles

AES 127th Convention, New York, NY, USA, 2009 October 9–12

Page 4 of 9

<masterSection volume="100">
 <dspControl dspName="reverb">
 <parameter name="preset" value="forest"/>
 </dspControl>
</masterSection>

<section id="ambiance" cues="river wind crickets">
 <volumeControl level="60"/>
</section>

<section id="animals" cues="bird monkeys">
 <volumeControl level="100"/>
</section>

The configuration in this case is simple, we added a
reverb DSP on the master section to add global depth to
the soundtrack, and separated the cues in two mix
groups: one for the ambient sounds, the other for the
animals. However, as the goal is recreating a realistic
and immersive soundtrack, what do we need to change
in order to add 3D spatialization?

<masterSection volume="100">
 <auditor>
 <locationControl location="0 0 0"/>
 <orientationControl orientation="0 0 1"/>
 </auditor>
 [...]
</masterSection>

<section id="river_3D" cues="river">
 <mix3D>
 <locationControl location="-10 0 50"/>
 <macroscopicControl size="2000 100 10000"/>
 </mix3D>
</section>

We specified the auditor’s location and orientation in
the master section, as we want him to be at the center of
the scene, looking forward. Then we added a section to
specify the 3D mix parameters of the river – its size and
location – in our virtual environment. The same thing
can be done for the fly cue with an additional Doppler
effect to increase the perception of movement of the fly.
Obviously, it means that the location of our virtual fly
needs animation, but the solution for this problem will
be seen later.

3.2. Controlling the sound parameters

As you may have noticed, in order to adjust the multiple
parameters of the audio sources, DSP and mixers we
have defined special elements that we call audio
controls. For each parameterized source, we have a
distinct control element that regroups all the related
parameters. For example, the tempoControl element is
used to adjust the tempo synchronization base of an
audio source, the locationControl allows to specify the
location of the auditor or a sound source in a 3D
environment, etc. Audio controls are directly contained

by the audio elements – cues, chunks, sounds, sections
and master section – on which the effect of those
controls is applied.

3.2.1. Audio controls
For our jungle scene, we have only specified the overall
audio structure and mix. We will now be interested in
the methods to add more variations to the soundtrack, in
order to have a more dynamic and somewhat
unpredictable result. First, to ease the static structure of
the cue/chunk/sound hierarchy a little, we can use the
triggerControl:

<cue id="wind" loopCount="-1">
 <chunk pick="random" fadeOutType="crossfade"
fadeOutDur="0.5s">
 <sound src="/wind_1-1.wav"/>
 <sound src="/wind_1-2.wav"/>
 <sound src="/wind_1-3.wav"/>
 <sound src="/wind_1-4.wav"/>
 </chunk>
 <chunk pick="exclusiveRandom"
fadeOutType="crossfade" fadeOutDur="0.5s">
 <sound src="/wind_strong_1.wav"/>
 <sound src="/wind_strong_2.wav"/>
 <triggerControl chance="10"/>
 </chunk>
</cue>

The second chunk has here a 10% chance of being
played after the first one, and is used to produce
sometimes a stronger wind effect. Moreover, the trigger
control can also be used to start automatically and in a
regular manner the cues. In that case, it can be useful to
also use the spawnControl to define a maximum number
of instances allowed to play at the same time:

<cue id="fly" restartOnRetrigger="never">
 <chunk pick="random" dur="rand(5, 20)s"
fadeInType="simplefade" fadeInDur="2s"
fadeOutType="simplefade" fadeOutDur="2s">
 <sound src="/fly_1.wav" pickPriority="2"
loopCount="-1"/>
 <sound src="/fly_2.wav" pickPriority="1"
loopCount="-1"/>
 <sound src="/fly_3.wav" pickPriority="1"
loopCount="-1"/>
 </chunk>
 <spawnControl maxInstances="1"/>
 <triggerControl chance="10" autoStart="rand(5,
20)s"/>
</cue>

The fly cue is here set to be randomly triggered every 5
to 20 seconds interval and a 10% chance to be played
each time it is triggered. Only one fly can be heard at a
time as set by the spawn control. You can notice the
additional restartOnRetrigger parameter on the cue that
specifies its behavior when a new instance is required to
play: with the current value “never”, a play request on
the cue will be effective only if the maximum instances

Lasorsa, Lemordant An Interactive Audio System for Mobiles

AES 127th Convention, New York, NY, USA, 2009 October 9–12

Page 5 of 9

number has not be reached, else nothing will happen.
With the value “always”, the cue will play from the
begin each time it is requested, stopping the currently
playing instance if there is one hence only one instance
will be used at anytime. Finally, the value “auto” will
cause the oldest instance of the cue to restart only when
the system is running out of available instances for the
cue. Spawn control can be defined at every level of the
hierarchy, from the sound to the master section, where it
allows to define the global maximum number of
instances allowed.

3.2.2. Animations
There are many different control elements available in
our language allowing a broad range of action, but they
also permit more than just defining static values, as
every control can be fully animated. Such as some
others languages like SMIL or Scalable Vector
Graphics (SVG) [7], AMML has configurable animate
elements, allowing control parameters animation. These
elements are directly contained inside the audio control
element they refer to, and can be used to modify any
parameter of this control. Like SVG animations, simple
linear transitions or complex animation paths can be
defined, leaving a great range of creativity in the hands
of the sound designer. It also removes the need to rely
on the programmer to animate the values of the audio
elements.

Back to our jungle soundtrack, we would like the birds
and monkeys sounds to become quiet and more sparse
when the player fires a gunshot, then progressively
regain their initial volume and frequency after some
time. This is a perfect example to illustrate our
animation system:

<section id="animals" cues="bird monkeys">
 <volumeControl level="100">
 <animate id="quiet_animals_anim"
attribute="level" from="rand(25, 40)" to="100"
dur="rand(10, 20)" fill="remove"/>
 </volumeControl>
</section>

The animation added here will alter the mix of the
section, by cutting the volume down to value between
25 and 40, and progressively return back to 100 with
duration between 10 and 20 seconds. We also need to
animate the trigger control of the bird and monkeys cues
so they become more sparse:

<cue id="monkeys" restartOnRetrigger="never">
 <chunk pick="exclusiveRandom"
fadeOutType="simplefade" fadeOutDur="1s">
 <sound src="/monkeys_1.wav"/>
 <sound src="/monkeys_2.wav"/>

 <sound src="/monkeys_3.wav"/>
 <sound src="/monkeys_4.wav"/>
 </chunk>
 <spawnControl maxInstances="2"/>
 <triggerControl chance="15"
autoStart="rand(0, 10)s">
 <animate id="more_sparse_monkeys_anim"
attribute="chance" dur="rand(10, 20)s"
from="rand(0, 3)" by="rand(0, 5)" fill="remove"/>
 </triggerControl>
</cue>

A similar animation is also defined for the bird cue.
Using animation is an easy way to create more
variations in the soundtrack and adapt it to the current
scene situation, by changing the reverb parameters for
example. Subsequently, once the whole audio
soundtrack has been defined, we need to take care of the
synchronization of the directly playable elements, cues
and animations.

3.3. Synchronization

When composing an interactive audio soundtrack, a
very important step in the design process is to
synchronize the audio elements to the visual scene and
user input. There is many ways to do this
synchronization: time triggers, callbacks, user events…
In audio interactive formats like the FMOD Designer
[8] format or iXMF, a mix of these methods are used,
but agreements between sound designers and
programmers are often needed – especially when using
callbacks – and little changes in the soundtrack usually
need some adaptation on both sides. As we sought after
a clear separation between these tasks – programming
and sound design – we aimed our language towards a
simplified synchronization system for both sides.

3.3.1. Time, tempo and event unification
To reach this goal, we use a system very similar to
SMIL, with some additional features. Like SMIL,
synchronizable audio elements have begin and end
attributes to specify when they start and stop. These
attributes can use a unified time, tempo and event based
synchronization, and random expressions can be also be
used. By unified, we mean that any of these three
synchronization sources can be mixed indifferently by
using for example time or tempo based offsets on
events, or timed and event based triggers at the same
time. In addition, a quantization attribute allows
restricting determined or undetermined triggers on
specified time or tempo interval, so they can always be
in sync as wanted by the sound designer. In a case such
as an indeterminate music soundtrack being
dynamically built, a cue playing a particular melody set

Lasorsa, Lemordant An Interactive Audio System for Mobiles

AES 127th Convention, New York, NY, USA, 2009 October 9–12

Page 6 of 9

to be started on a player event – so that may happen
anytime – can be restricted to start only on the begin of
a 4 beats timing, to be in sync with the rest of the music.
In our jungle soundtrack, there is no need for complex
synchronization, animals and insects cues are
automatically triggered so we only need to start the
ambience cues at the start of our scene (0 seconds) like
that:

<cue id="river" begin="0s" ...>
[...]

The more interesting part is related to the management
of events, as we chose to focus on them in AMML to
deal with all sorts of interactions, and to make the
bridge between the sound designers and programmers.

3.3.2. An event-driven system
Events are already present in SMIL, in two forms:
internal events automatically generated when the state
of the multimedia elements changes, and external
events. The latter is though limited to some predefined
events, like keyboard or mouse input. On the contrary,
the FMOD Designer format and iXMF only support
custom user events, with for iXMF a static binding to
cue events, the different actions occurring then being
scripted in these cues. In AMML, we use a mix of all
those concepts with some SMIL-like attributes, but with
user definable events and a lot more flexibility.
First, external events can be freely defined by the sound
designer, just by using them – by their name – explicitly
in the document. The programmer’s task will then only
consist in sending the events to the AMML API which
will dispatch the events, with unrecognized events
simply being ignored. This the only part of the
soundtrack design process that needs interaction with
the programmers, as they need to know which events
are required to be sent. But the opposite also works:
programmers define and throw events throughout the
application, and the sound designer picks up only events
he needs, ignoring the others. In the jungle example, an
external event is sent when the player decides to fire a
gunshot:

<cue id="shot" begin="player.shot"
restartOnRetrigger="always">
 <chunk pick="random" fadeOutType="simplefade"
fadeOutDur="1s">
 <sound src="/shot_1.wav"/>
 <sound src="/shot_2.wav"/>
 <sound src="/shot_3.wav"/>
 </chunk>
</cue>

The cue corresponding to the gunshot will then
automatically start when the player.shot event is

received. Next, the internal events – like start, stop or
repeat events – are generated automatically by cues,
animations and chunks, using a simple dotted notation
based on their ID name. We can also distinguish
between global events for an object (any instance of the
object will generate the event) and instance events by
using the this prefix. Using internal events is useful for
adding interaction between the audio objects. For
example in our jungle scene, we want the animals to
become quiet when a shot is fired. We added previously
an animation to reduce the volume of their section, but
we would also like all animal cues to be stopped when
the shot cue is triggered:

<cue id="bird" end="shot.start" ...>
[...]
<cue id="monkeys" end="shot.start" ...>
[...]

Moreover, event usage is not limited to triggering cues
or animations. They can be used as well for many other
actions, like selecting the current sound of a chunk,
disabling a chunk, etc. As data can be passed along
events, animations are also able to directly use this data
as animation values:

<section id="fly_3D" cues="fly">
 <mix3D>
 <locationControl
enableAutomaticDoppler="true">
 <animate id="fly_3D_anim"
attribute="location" eventValue="fly.move.default"/>
 </locationControl>
 </mix3D>
</section>

We added here a new section to add 3D spatialization to
the fly cue. Its location is animated from the special data
structure – a set of named values – received along the
fly.move event. Each time this event is received the
location of the fly is updated, and an automatic Doppler
effect calculated from its movement is applied.

Finally, we chose to use events for managing all
interactions in our language, but the spread of events is
not unilateral from the application to the soundtrack, as
the internal events generated by our system can also be
retrieved by the application for both ways interactions.

3.4. Dynamic audio adaptation

Even though we integrated many features to control
various aspects of the soundtrack dynamically,
everything is still based on a predefined audio object
hierarchy. Although it may be flexible enough for a
broad range of usages, there are still limitations inherent
of this kind of static structure. When composing

Lasorsa, Lemordant An Interactive Audio System for Mobiles

AES 127th Convention, New York, NY, USA, 2009 October 9–12

Page 7 of 9

complex audio scenes, there is sometimes a need to
break the strict logic of the defined hierarchy,
depending of certain conditions. That is where you
would need scripts in other formats, but instead of
pulling and checking data to see if those conditions are
met, we chose to use a different approach in our
language: you can simply describe what happens in the
audio flow when a condition is met, as an event being
pushed. This straightforward approach simplifies the
task of the audio designer and prevents the need for him
to think like a programmer.

3.4.1. Event graphs

As events are used everywhere in our synchronization
system and are good indicators of the status of the
diverse soundtrack elements, it was a natural extension
to use them to replace conditional scripting.
Traditionally when using audio scripts, the sound
designer has to check the application status or use some
variables to determine the changes needed in the
soundtrack. But this task should be done by the
programmer, not the sound designer. As XML is a
declarative language we wanted a declarative way of
handling dynamic soundtrack adaptation to the context.
Thus, sequences of actions on the soundtrack can then
be declared to occur on particular conditions – without
worrying about how to check for those conditions – and
connected using our graph description system entirely
based on events (fig. 3).

Figure 3 Simple event graph example

Multiple action sequences can be assigned on the same
event though only one is picked at a time, in the same
manner as sounds are picked inside a chunk:
sequentially, randomly or manually (the sequence is set
as active by an event). Defining event graphs is very
simple, as action sequences allow raising custom events.
The remaining question is still: what can we do inside
those action sequences? We wanted to avoid adding a
further level in the audio hierarchy as the main objective

was to relax the existing one, so we added a sort of side
level to our audio hierarchy, focused on controlling the
audio flow of the soundtrack by modifying the way
audio elements should be normally played.

3.4.2. Altering the audio flow

The regular audio flow is made up by the soundtrack
manager playing the defined audio elements the way
they are supposed to be played, as described by the
audio hierarchy. Our idea was to add a way to alter the
regular audio flow, by including a sort of second
parallel soundtrack manager, dedicated only to do
modifications on the arrangement produced. This is
where we introduce the flowControl elements: triggered
the same way as cues or animations, they contain one or
many action sequences, only one being picked at a time
as multiple sounds inside a chunk. Actions are simple
commands aiming at the manipulation of the audio
flow: you can mute and unmute cues or sections, start
and stop a cue, an animation or another flow control,
raise an event, and queue a playing cue to another one.
Queuing cue elements is a convenient way to use in a
different way the audio hierarchy: the chunk for a
playing cue is followed with a chunk of another
specified cue like if it was the one supposed to play
after – any transition set applying – allowing new
degrees of freedom for soundtrack composition (fig. 4).

Figure 4 Effect of Queue actions

This action is very useful for example for producing
continuous background music that changes depending
of the game situation: cues contains the distinct music
moods, and flow control elements manages them so
only one is playing at a time while they seamlessly fade
from one to another in regards of the situation. A simple
demonstration for this can be defined in our jungle
example, in order to manage the climate ambient sound.
In addition to our wind cue, we add a simple cue for
simulating a rainy weather:

Lasorsa, Lemordant An Interactive Audio System for Mobiles

AES 127th Convention, New York, NY, USA, 2009 October 9–12

Page 8 of 9

<cue id="rain" loopCount="-1">
 <chunk pick="random" fadeOutType="crossfade"
fadeOutDur="1s">
 <sound src="/rain_1-1.wav"/>
 <sound src="/rain_1-2.wav"/>
 <sound src="/rain_1-3.wav"/>
 </chunk>
</cue>

Then we use a flow control to manage the climatic
changes:

<flowControl id="weather" begin="weather.change">
 <choice pick="ordered">
 <sequence>
 <queue source="rain" target="wind"/>
 </sequence>
 <sequence>
 <queue source="wind" target="rain"/>
 </sequence>
 </choice>
</flowControl>

The event weather.change sent by the game engine will
now trigger each time a change in the climatic
ambiance.

Finally, flow controls are simple and creative elements,
effective in many applications. However, for the case
where scripting is essential and cannot be easily
replaced only by a simple flow control – manipulation
of DSP parameters based on conditional calculation for
example – there is always the solution where the
programmer does the scripting job internally in the
application and send an event with the needed data,
while the sound designer use the event data in an
animation (for parameter animation) or just as a trigger.

4. APPLICATIONS

We are actually developing a mobile application for
indoor-outdoor guidance of blind people using Audio
Augmented Reality (Hear-Through AR), which delivers
additional sounds through bone conduction, while
environmental sounds are still heard through the ear
canals. The use of compound documents (OSM and
AMML) is of a great help for authoring the audio-
geographical database and in its updating through a
wiki-web style mechanism. 3D rendering of speech and
non-speech audio is of a primary importance as is the
possibility to interrupt the audio system through our
event mechanism to ask for more information.

5. FUTURE WORK
The use of XML makes evolutions of our format easy,
as new features can be added without breaking the

compatibility with old versions. We are currently
working on a solution to allow AMML data
manipulation inside flow controls, to add even more
dynamic audio adapatation possibilities. Using more
extensively the data attached to events is also under
examination. Also, we plan to support additional event
triggering using markers inside audio files, like iXMF
already does.

Concerning events, the versatility of their usage –
especially when using flow control elements – can
potentially leads to unwanted behavior like infinite
loops if they are not used with care. Cascading event
triggers, while allowing complex interactions between
internal and external elements, can also easily make a
sound designer lose the control of what is occurring on
the soundtrack. Unfortunately there is no simple
solution for this kind of problems as it is a downside of
leaving more freedom in hands of sound designers.

Finally, most efforts regarding the evolution of our
language are oriented towards extensive usage of
granulation. Currently, only macro grains (audio
samples with duration >100ms) are really usable with
our soundtrack manager. Though, we would like to
support usage of micro grains (duration from 1 to
100ms) and provide functions to make dynamic audio
reconstruction more efficient in this particular
granulation usage.

6. REFERENCES

[1] Interactive 3D Audio Rendering Guideline Level
2.0, Interactive Audio Special Interest Group,
http://www.iasig.org

[2] Synchronized Multimedia Integration Language
(SMIL 2.1), W3C, http://www.w3.org/TR/SMIL2/

[3] Interactive XMF, Interactive Audio Special Interest
Group, http://www.iasig.org./wg/ixwg/

[4] Keyhole Markup Language (KML), Google,
http://code.google.com/intl/en/apis/kml/

[5] OpenStreetMap, http://www.openstreetmap.org

[6] Leonard J. Paul, An introduction to granular
synthesis in video games, From Pac-Man to Pop
Music, Karen Collins (2008).

Lasorsa, Lemordant An Interactive Audio System for Mobiles

AES 127th Convention, New York, NY, USA, 2009 October 9–12

Page 9 of 9

[7] Scalable Vector Graphics (SVG), W3C,
http://www.w3.org/Graphics/SVG/

[8] FMOD, Firelight Technologies Pty, Ltd.
http://www.fmod.org

