Logics for XML

Pierre Geneves

Institut National Polytechnique de Grenoble
Institut National de Recherche en Informatique et Automatique

Ph.D Defense — December 4t 2006

Outline

e Introduction
@ XML, Schemas, XPath
@ Static Analysis
@ The Logical Approach

e A logic for finite trees
@ Formulas
@ XML Embeddings

e Satisfiability-Testing Algorithm
@ Principles
@ Implementation Techniques

e Conclusion
@ Summary of Contributions
@ Perspectives

Introduction XML, Schemas, XPath

pproach

XML and Schemas

Extensible Markup Language (XML)

@ A markup langage for representing tree structures
@ Representation is independent from processing

Schemas

@ Each application defines constraints on documents using a
schema

@ Several formalisms exist for defining schemas (e.g., DTD, XML
Schema, Relax NG)

Introduction

XPath: The Standard Query Language

@ For navigating and extracting information from XML trees

@ Evaluating an XPath query from a given context node returns a
set of matching nodes

Introduction

Thi

XPath: The Standard Query Language

@ For navigating and extracting information from XML trees

@ Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #1

child ::division/child ::group

Introduction

XPath: The Standard Query Language

@ For navigating and extracting information from XML trees

@ Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #1

child ::division/child ::group
company
division division department
group manager group group manager

N /IN |

staff site staff staff unit site staff staff

Introduction

XPath: The Standard Query Language

@ For navigating and extracting information from XML trees

@ Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #1

child ::division/child ::group
company*
division division department
group manager group group manager

N /IN |

staff site staff staff unit site staff staff

Introduction

Thi

XPath: The Standard Query Language

@ For navigating and extracting information from XML trees

@ Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #1

child ::division/child ::group
company*
division division department
manager manager

| |

staff site staff staff unit site staff staff

Introduction

XPath: The Standard Query Language

@ For navigating and extracting information from XML trees

@ Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #2

parent ::company/descendant ::staff[not parent ::manager]
company

division division department

group manager group group manager

N /IN |

staff site staff staff unit site staff staff

Introduction

XPath: The Standard Query Language

@ For navigating and extracting information from XML trees

@ Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #2

parent ::company/descendant ::staff[not parent ::manager]
company

division division department®

group manager group group manager

N /IN |

staff site staff staff unit site staff staff

Introduction

XPath: The Standard Query Language

@ For navigating and extracting information from XML trees

@ Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #2

parent ::company/descendant ::staff[not parent ::manager]
company

division division department®

group manager group group manager

et b @it @ |

S|te staff unit site staff

Introduction XML, Schemas, XPath

Static Analysis
The Logical Approach

Motivation: Safe and Efficient XML Processing

@ XPath plays a central role in key standards (e.g. XSLT, XQuery...)
@ Static analysis of XPath has become crucial

Basic Static Analysis Tasks

© XPath typing
@ XPath query comparisons
@ query containment, emptiness, overlap, equivalence

Main Applications

@ Static analysis of host languages (e.g., type-checking of XSLT,
XQuery), error-detection, optimization

@ Checking integrity constraints in XML databases, XML security

@ Obijective: effectively analyzing XPath queries with schemas)

Introduction

Challenges

@ Query comparisons and typing are undecidable for the complete
XPath language

Introduction
ntroductior XML, Schemas, XPath

Static Analysis
The Logical Approach

Challenges

@ Query comparisons and typing are undecidable for the complete
XPath language

Open Questions

@ What are the largest XPath fragments with decidable static
analysis?
@ Which fragments can be effectively decided in practice?

@ Is there a generic algorithm able to solve all related XPath
decision problems?

Introduction
ntroductior XML, Schemas, XPath

Static Analysis
The Logical Approach

Challenges

@ Query comparisons and typing are undecidable for the complete
XPath language

Open Questions

@ What are the largest XPath fragments with decidable static
analysis?
@ Which fragments can be effectively decided in practice?

@ Is there a generic algorithm able to solve all related XPath
decision problems?

Difficulties

@ Considered XPath operators and their combination (e.g., reverse
axes, recursion)

@ Checking properties on a possibly infinite set of XML documents
@ Very high computational complexity

Introduction

The Logical Approach

The Logical Approach: Overview

@ Find an appropriate logic for reasoning on XML trees
@ Formulate the problem into the logic and test satisfiability

)

XPath Translation
Fragment %'
—(¢, = @) Yes/No
Satisfiability
Schemas ?s Logic Testing
S Algorithm

Translation

Introduction

The Logical Approach

The Logical Approach: Overview

@ Find an appropriate logic for reasoning on XML trees
@ Formulate the problem into the logic and test satisfiability

)

XPath Translation
Fragment %'
—(¢, = @) Yes/No
Satisfiability
Schemas ?s Logic Testing
Algorithm
s Translation

Critical Aspects

@ The logic must be expressive enough
@ The algorithm must be effective in practice for XML translations

Introduction

The Logical Approach

A Large XPath Fragment

Lxpath > €

Path p

Qualif ¢

Axis a

/P
p
e 1 e
e; Ney

p1/P2
plal
a.o
aix

qp and gy
gy orap
notq

child

self

parent
descendant
descendant-or-self
ancestor
ancestor-or-self
following-sibling
preceding-sibling
following
preceding

oo
2
[6) self
parent
o ©
> child
POl R preceding-sibling
O OO0 Q following-sibling

o O 0 O O Q

O QO OO0 QN0 OO O
O OO0 O0/0 OQ Q\O0 QO Q
OO0 00O Q OO O\O QOO
O 0 O0OO0OfO0 O O O O O0O\O OO0Oo

descendant

@ Multi-directional tree navigation

@ Node selection and path
existence

@ Almost full XPath

Introduction

The Logical Approach

Models for XML Documents

@ Finite ordered unranked trees, one label per node
@ Bijective encoding of unranked trees as binary trees J

@ XML documents seen as finite ordered binary trees

e Without loss of generality
e XPath navigation must be expressed in binary style

Introduction

The Logical Approach

Candidate Logics for XML

@ First-Order Logic (FO) and variants (over trees)

close to Lxpaih €XPressive power
X do not fully capture schemas

10/27

Introduction

The Logical Approach

Candidate Logics for XML

@ First-Order Logic (FO) and variants (over trees)

close to Lxpaih €XPressive power
X do not fully capture schemas

@ Monadic Second-Order Logic (WS2S)

extends FO with quantification over sets of nodes
captures Lxpan and finite tree automata

X complexity for satisfiability: hyperexponential

X blow-ups observable for XPath containment

10/27

Introduction

The Logical Approach

Candidate Logics for XML

@ First-Order Logic (FO) and variants (over trees)

close to Lxpaih €XPressive power
X do not fully capture schemas

@ Monadic Second-Order Logic (WS2S)

extends FO with quantification over sets of nodes
captures Lxpan and finite tree automata

X complexity for satisfiability: hyperexponential

X blow-ups observable for XPath containment

@ Alternation-free fragment of the p-calculus (AFMC)

supports schemas and XPath (when extended with converse)
complexity for satisfiability: 2°("'°9(W) (with converse)

the solver a priori explores Kripke structures

formulas are more general than needed for XML

low performance in practice (does not scale to large instances)

X X X

10/27

A logic for finite trees

Contribution Idea

@ design a specific logic whose models are finite trees
@ design the algorithm for satisfiability-testing

11/27

A logic for finite trees

Contribution Idea

@ design a specific logic whose models are finite trees
@ design the algorithm for satisfiability-testing

Remark #1

@ Finite tree models

e avoid exploring useless models
e allow a bottom-up algorithm for satisfiability-testing

Remark #2
@ Only finite recursion is of interest for XPath and Schemas

11/27

A logic for finite trees

Formulas

XML Embeddings

Formulas of the £, Logic

@ Programs « € {1,2,1,2} for 1/‘)
navigating binary trees (@ = «) J J
L,2e, ¢ = formula
T true

| o | -o atomic prop (negated)
| 7 | * context (negated)
| oV disjunction
| AP conjunction
| (e | —(a)T existential (negated)
| X variable
| wX.p unary fixpoint
| wXi.piiny n-ary fixpoint

@ Closed formulas

12/27

A logic for finite trees Formulas
XML Embeddings

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node

A logic for finite trees Formulas
XML Embeddings

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a

inL,:

A logic for finite trees Formulas
XML Embeddings

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a

inL,: a

A logic for finite trees Formulas
XML Embeddings

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a

inL,: a

A logic for finite trees Formulas
XML Embeddings

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a

inL,: a

A logic for finite trees Formulas
XML Embeddings

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a

inL,: a

A logic for finite trees Formulas
XML Embeddings

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a
inL,: an(pz.(2)y*v(2)z)

J @ uZ . finite recursion
7)

A logic for finite trees Formulas
XML Embeddings

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a/preceding-sibling::b
inL,: a/\(uZ.<§> ~/'v<§>z)

; @ uZ.p : finite recursion
7)

A logic for finite trees Formulas
XML Embeddings

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a/preceding-sibling::b
in L, bA[pY. (2)(@aA(pzZ.(2)y* Vv (2)Z))V(2)Y]

; @ uZ.p : finite recursion
0)

A logic for finite trees Formulas
XML Embeddings

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a/preceding-sibling::b
in L, bA[pY. (2)(@aA(pzZ.(2)y* Vv (2)Z))V(2)Y]

; @ uZ.p : finite recursion
\Q @ {1,2} required for forward axes!
° @ {1,2} required for reverse axes!
e @ Converse programs are crucial

A logic for finite trees Formulas
XML Embeddings

Semantics of £,

@ The set of models of a formula ¢ is the set of finite binary trees
for which ¢ is satisfied on some node J

Translating following-sibling::a/preceding-sibling::b
in L, bA[pY. (2)(@aA(pzZ.(2)y* Vv (2)Z))V(2)Y]

; @ uZ.p : finite recursion
\Q @ {1,2} required for forward axes!

° @ {1,2} required for reverse axes!
@ Converse programs are crucial
e o t><path(ea X) . Lypath X £;¢ - ﬁu
9 @ y is the latest navigation step
e Initially: x =~*

A logic for finite trees Formulas
XML Embeddings

XPath and Closure under Negation of £,

A Very Important Property

@ Lxpath translations are never of the form: uX. (a) X V (@) X
@ Lxpath translations are always cycle-free

@ no occurrence of both a path and its converse between a fixpoint
binder and its variable

@ Restricting £, to cycle-free formulas ensures closure under
negation of recursion
e The negation of finite recursion remains finite recursion
e —pisexpressiblein £, forall ¢ € L,
@ Computable using De Morgan’s laws, e.g.
—{a)p = (a) T V(a) ~p, and ~puX.@ = pX.—p { X/}
@ Crucial for implication (e.g., XPath containment)

14/27

A logic for finite trees Formulas
XML Embeddings

Translating Schemas into £,

Models for Schemas

Regular Tree Types
@ Schema languages correspond to P
subclasses of regular tree types

[Murata et al., 2005]

Translating Regular Tree Types into £,

@ The binary encoding of trees also applies to tree types

@ Binary tree type expressions model schemas without loss of
generality

@ They can be translated into the logic (tschema(:) : Liype — L)

e the n-ary fixpoint binder is used for mutually recursive definitions
o only forward programs « € {1,2} are used

15/27

A logic for finite trees Formulas
XML Embeddings

Formulating Decision Problems to be Solved

° txpath(ea X) @ Lxpath X Ly— Ly and tschema(T) : Liype — Ly
@ L, closed under boolean operations

@ XPath expressions ey, ...,e, and schemas T4, ..., Ty
@ ~* for comparing XPath expresssions from the same context

Many Decision Problems Can be Formulated

@ XPath emptiness: typath(€1,7° A tschema(T1))

@ XPath typing: txpath (e1,7* Atschema(T1)) A —tschema(T2)
e if the formula is unsatisfiable then all nodes selected by e; under
type constraint T, are included in the type T,

@ XPath containment:
txpath(ela ¥ A tschema(Tl)) A _‘txpath(eZ» v A tschema(Tz))
@ XPath equivalence, XPath overlap

16/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Deciding £,, Satisfiability

@ Does a formula ¢y € £,, admit a satisfying finite binary tree? J

@ Enumerate finite binary trees, look for a node on which) holds

@ The truth status of a formula) can be determined from the
status of a few of its subformulas

@ The Fisher-Ladner Closure cl(y)) = { subformula of ¢) where
fixpoints are unwounded once }

@ We focus on a subset Lean(y)) C cl(1)):

@ atomic propositions (alphabet symbols in 1)
e existential formulas

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

Emptiness of XPath expression: self ::b/parent :a

@ ¢ =aA (1) pwith p = uX.b Vv (2) X
@ exp(p) =bV(2)p
HT,
(1T,
<2> T7
)T,
Lean(y) =< o,
a7
b7
(1) e,
(2) ¢
@ The atomic proposition “c” simulates an infinite alphabet
(c = -aA-b)

18/27

Principles

Satisfiability-Testing Algorithm Implementation Techniques

Nodes of the Searched Binary Tree

@ The satisfiability-testing algorithm attempts to build a satisfying
finite binary tree such that some node satisfies 1

@ A node is a ¢-type: asett C Lean(y) which satisfies constraints,
e.g.:

e modal consistency: V (a) ¢ € Lean(¢), (o) p et = (o) T 't
e tree node: <I> TtV <§> Tt
o labeled with exactly one atomic proposition o € t

@ a 1-type valuates any formula in cl(+/) via a relation €
o forinstance o1 A, € tiff o1 €tand o, €t

19/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Satisfiability-Testing Algorithm: Principles

Bottom-up Construction of a Tree of -types

@ AsetT of ¢-types is repeatedly updated (least fixpoint
computation)
o Initially: 0
e Step 1: all possible leaves are added
e Stepi : all possible parent nodes of current nodes are added

Termination

@ If ¢ is present in some root node, then ¢ is satisfiable
@ The algorithm returns a satisfying model as soon as it is found

@ Otherwise, it terminates when no more node can be added
@ all roots of all buidable finite trees have been added

20/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

Emptiness check of XPath expression self ::b/parent :a J

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

p=aA(1l)pwithp=pX.bV(2)X =exp(p)=bV(2) ¢]

Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

Lean(y) = {() T, DT, AT,)T, 0, a, b, (o, @p} |
p=aA(1l)pwithp=pX.bV(2)X =exp(p)=bV(2) ¢]
Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

TO=10

Lean(y) = {(1)T, (1) T, (2T, (2) T, 0, &, b, (1) ¢, (2) ¢} J
Y =aA (1) pwith o = uX.b Vv (2) X = exp(¢) =b Vv (2) ¢]
Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

Tl =7
TO=10
Lean(y) = {(1)T, (1) T, (2T, (2) T, 0, &, b, (1) ¢, (2) ¢} J
Y =aA (1) pwith o = uX.b Vv (2) X = exp(¢) =b Vv (2) ¢]
Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

D DDIIIDDWD)

TO=10

Lean(y) = {(1)T, (1) T, (2) T, (2) T, 0, a, b, (1) ¢, (2) ¢} J
Y =aA (1) pwith o = uX.b Vv (2) X = exp(¢) =b V (2) p]
Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

T2 =7)))
D DDIIIDDWD)
TO=10

Lean(y) = {(1)T, <I> T, (2)T, <§> T, 0, a, b, (1), <2>cp} J
Y=an (1)pwith g = uX.bV (2)X = exp(p) = bV (2) ¢ |
Emptiness check of XPath expression self ::b/parent ::a J

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example
Does (b) belong to T2 ?
T2 =7 , , ,
D DDIIIDDWD)
TO=10
Lean(¢)) = {(1)T, (1) T, ()T, (2)T, o, a, b, (1), (2) o} |
b =an (1) pwith o = uX.b Vv (2)X =exp(e) =b Vv (2) ¢ |

Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

Does \b)<2><p belong to T2 ?

T2 =7)))
D @DIIIDIDWD)
TO=10

Lean(y) = {(1)T, <I> T, (2)T, <§> T, 0, a, b, (1), (2)@} J
Y=aA (1) pwith = puX.bVv(2)X =exp(p) =bV (2)e |

Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

Does \b)<2><p belong to T2 ?

T2 =7)))
EICRCRCREN - FERCRCNC R
TO=10

Lean(y) = {(1)T, <I> T, (2)T, <§> T, 0, a, b, (1), <2>cp} J
Y=an (1)pwith g = uX.bV (2)X = exp(p) = bV (2) ¢ |

Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example
Does (b) belong to T2 ?
T2 =7 , , ,
ERICRCNE ROROREREN - NN
TO=10
Lean(¢)) = {(1)T, (1) T, ()T, (2)T, o, a, b, (1), (2) o} |
b =an (1) pwith o = uX.b Vv (2)X =exp(e) =b Vv (2) ¢ |

Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

-) Does Q) satisfy ¢ ?
DD DIDI J o W J }

TO=10

Lean(y) = {() T, (I} T, 2T, (2) T, o, a, b, (1)¢, (2)p} |

b =an(1)pwith g = uX.bV (2)X = exp(g) =b Vv (2) ¢)

Emptiness check of XPath expression self :b/parent ::a J

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

Does 0 satisfy ¢ ? No!

T2 =7 ,

"D DDIIIDDWD)
TO=10

Lean(y) = {(1)T, <I> T, (2)T, <§> T, 0, a, b, (1), <2>cp} J
Y=an (1)pwith g = uX.bV (2)X = exp(p) = bV (2) ¢ |

Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

Does /\a)<l> © belongtoT??
T2 =7 , £ , ,
D DDIIIDDWD)
TO=10
Lean(y) = {(1)T, (1) T, (2)T, (2) T, 0, a, b, (1) ¢, (2) ¢} J
v=an (1)pwithp=puX.bVv(2)X =exp(p)=bV(2)¢p J
Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

Does /\a)<1>¢ belong to T2 ?
T2 =7 , £ , ,
"D PIDDDID WD
TO=10
Lean(¢)) = {(1)T, (1) T, ()T, (2)T, o, a, b, (1), (2) o} |
¢ =an (1) pwithp=puX.bV (2)X =exp(p) =bV (2) ¢ |

Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

Does /\a)<1>¢ belong to T2 ?
T2 =7 , £ , ,
EICRCRCREREN- FORCNCRE
TO=10
Lean(¢)) = {(1)T, (1) T, ()T, (2)T, o, a, b, (1), (2) o} |
¢ =an (1) pwithp=puX.bV (2)X =exp(p) =bV (2) ¢ |

Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

Does /\a)<l> © belongtoT??
T2 =7 , £ , ,
ERIC RO NE RORORERERCN I
TO=10
Lean(y) = {(1)T, (1) T, (2T, (2) T, 0, &, b, (1) ¢, (2) ¢} J
v=an (1)pwithp=puX.bVv(2)X =exp(p)=bV(2)¢p J
Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

T2 o) Does (&) Satlsfy
-9 9 J CRCREROROR I

TO=10

Lean(y) = {(1) T, (1) T, (2) T, (2) T, 0, a, b, (1), (2) p} |

Y =aA (1) pwith g = uX.b Vv (2) X = exp(p) =bV (2) » |

Emptiness check of XPath expression self :b/parent :a J

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

T2 s Does (@) satify
-9 9 J U J 9O W W}

TO=10

Lean() = {(1) T, ()T, ()T, (2) T, o, &, b, (1) o, (2)} |

Y=an(l)pwith o = uX.bV (2)X = exp(¢) = bV (2))

Emptiness check of XPath expression self ::b/parent ::a J

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

7% =81)
CRCRCRONE J v W J }
TO=10
Lean(y) = {(1) T, (1) T, (2T, (2) T, 0, a, b, (1), (2) p} |
Y =aA (1) pwith g = uX.b v (2) X = exp(p) =bV (2) p |
Emptiness check of XPath expression self :b/parent :a J

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

7% =81)
CRCRCRONE J v W J }
TO=10
Lean(y) = {(1) T, (1) T, (2) T, (2) T, 0, a, b, (1), (2) p} |
Y =aA (1) pwith g = uX.b v (2) X = exp(p) =bV (2) p |
Emptiness check of XPath expression self :b/parent :a J

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

T3 = ..
T2 = 81)
DD J 9 Y J }
TO=10
Lean(y) = {(1) T, (1) T, ()T, (2) T, 0, &, b, (1) ¢, (2) p}]
p=aA(1l)pwithp=pX.bV(2)X =exp(e)=bV(2) ¢]
Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Example

T" =T (fixpoint)

T3 = ..
T2 =81)
DD J 9 W J J
TO=0
Lean(y) = {(1) T, (1) T, ()T, (2) T, 0, &, b, (1) ¢, (2) p}]
Pp=aA(1)pwithp=pX.bVv(2)X =exp(e)=bV(2) ¢]
Emptiness check of XPath expression self ::b/parent :a)

21/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Correctness & Complexity

The satisfiability problem for a formula) € £, is decidable in time
20" where n = |Lean(v)|.

Theorem

For e € Lxpah and a regular tree type expression T, the translations
ofeand T in £, are linear in the size of e and T.

| A

A

22127

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Correctness & Complexity

Theorem

The satisfiability problem for a formula) € £, is decidable in time
20" where n = |Lean(v)|.

Theorem

| A

For e € Lxpah and a regular tree type expression T, the translations
ofeand T in £, are linear in the size of e and T.

Corollary

| A

XPath decision problems (e.g., typing, containment, emptiness,
equivalence) in presence of schemas can be decided in time
complexity 2°(M,

A

22/27

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Solver Implementation Techniques

Idea: Implicit Representation

@ The T's can be represented by boolean expressions
@ Set-theoretic operations: composition of boolean expressions

@ A set of ¢-types is encoded by a Binary Decision Diagram (BDD)
[Bryant, 1986]

Critical Optimizations

@ Conjunctive partitioning and early quantification (aims at
composing smaller BDDs)

@ Good initial order of BDD variables

Principles
Satisfiability-Testing Algorithm Implementation Techniques

Implementation

@ System fully implemented (Java + Buddy C BDD library)
@ Implementation available: http://wam.inrialpes.fr/xml/

v

Some Examples and Demo

@ DTD of the W3C SMIL 1.0 recommendation

Question | Answer | Time (ms)
/descendant :video C /descendant ::video[parent::seq] 7 no 125
Idescendant ::audio[preceding-sibling uvideo] # 07 yes 109
child::switch[ancestor::head] C descendant ::switch ? yes 105

@ Demo

24/27

Summary of Contributions
Perspectives
Conclusion

Main Contributions

A tree logic offering an interesting balance

@ expressiveness: regular tree types + multi-directional navigation
+ finite recursion

@ complexity for satisfiability: 2°(") where n = |Lean())|
@ Compilation of main XML concepts: linear
@ extensibility warranted (sublogic of the AFMC with converse)

A system for solving basic decision problems involving XPath queries
and schemas

@ The largest XPath fragment effectively treated so far for static
analysis

@ The system benefits from the boolean closure of the logic
@ Efficient implementation in practice

Summary of Contributions
Perspectives
Conclusion

Future Work

Extending the Tree Logic

@ Decidable counting constraints
@ Decidable data-value comparisons

@ Static type-checking of XSLT, XQuery

@ Optimization

@ XML Security

@ Checking integrity constaints in XML databases
@ Query comparison in P2P networks

26/27

Summary of Contributions

Perspectives
Conclusion

Thank you!

http://wam.inrialpes.fr/xml/

27127

http://wam.inrialpes.fr/xml/

f Contributions
Perspectives

Conclusion

B

[

Bryant, R. E. (1986).
Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677—691.

Murata, M., Lee, D., Mani, M., and Kawaguchi, K. (2005).
Taxonomy of XML schema languages using formal language
theory.

ACM Transactions on Internet Technology, 5(4):660—704.

27127

	Introduction
	XML, Schemas, XPath
	Static Analysis
	The Logical Approach

	A logic for finite trees
	Formulas
	XML Embeddings

	Satisfiability-Testing Algorithm
	Principles
	Implementation Techniques

	Conclusion
	Summary of Contributions
	Perspectives

