Logics for XML

Pierre Genevès

Institut National Polytechnique de Grenoble Institut National de Recherche en Informatique et Automatique

Ph.D Defense – December 4th 2006

Outline

Introduction

- XML, Schemas, XPath
- Static Analysis
- The Logical Approach

A logic for finite trees

- Formulas
- XML Embeddings
- Satisfiability-Testing Algorithm
 - Principles
 - Implementation Techniques

4 Conclusion

- Summary of Contributions
- Perspectives

A logic for finite trees Satisfiability-Testing Algorithm Conclusion XML, Schemas, XPath Static Analysis The Logical Approach

XML and Schemas

Extensible Markup Language (XML)

- A markup langage for representing tree structures
- Representation is independent from processing

Schemas

- Each application defines constraints on documents using a schema
- Several formalisms exist for defining schemas (e.g., DTD, XML Schema, Relax NG)

XML, Schemas, XPath Static Analysis The Logical Approach

XPath: The Standard Query Language

- For navigating and extracting information from XML trees
- Evaluating an XPath query from a given context node returns a set of matching nodes

XPath Query Example

XML, Schemas, XPath Static Analysis The Logical Approach

XPath: The Standard Query Language

- For navigating and extracting information from XML trees
- Evaluating an XPath query from a given context node returns a set of matching nodes

XPath Query Example #1

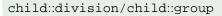
child::division/child::group

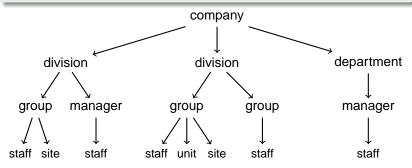
XML, Schemas, XPath Static Analysis The Logical Approach

XPath: The Standard Query Language

- For navigating and extracting information from XML trees
- Evaluating an XPath query from a given context node returns a set of matching nodes

XPath Query Example #1



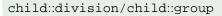


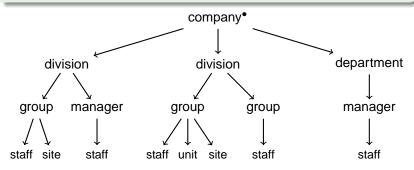
XML, Schemas, XPath Static Analysis The Logical Approach

XPath: The Standard Query Language

- For navigating and extracting information from XML trees
- Evaluating an XPath query from a given context node returns a set of matching nodes

XPath Query Example #1



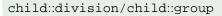


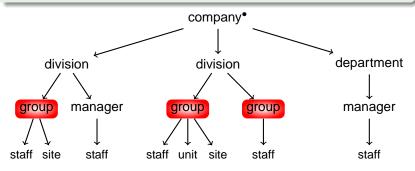
XML, Schemas, XPath Static Analysis The Logical Approach

XPath: The Standard Query Language

- For navigating and extracting information from XML trees
- Evaluating an XPath query from a given context node returns a set of matching nodes

XPath Query Example #1





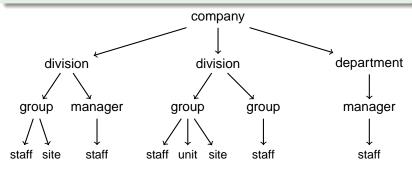
XML, Schemas, XPath Static Analysis The Logical Approach

XPath: The Standard Query Language

- For navigating and extracting information from XML trees
- Evaluating an XPath query from a given context node returns a set of matching nodes

XPath Query Example #2

parent::company/descendant::staff[not parent::manager]



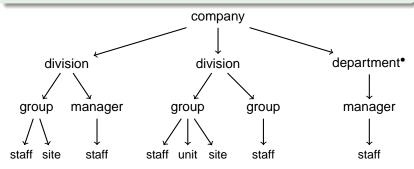
XML, Schemas, XPath Static Analysis The Logical Approach

XPath: The Standard Query Language

- For navigating and extracting information from XML trees
- Evaluating an XPath query from a given context node returns a set of matching nodes

XPath Query Example #2

parent::company/descendant::staff[not parent::manager]



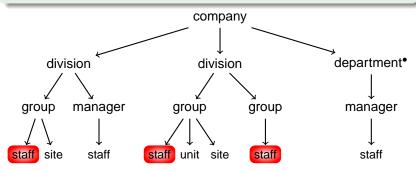
XML, Schemas, XPath Static Analysis The Logical Approach

XPath: The Standard Query Language

- For navigating and extracting information from XML trees
- Evaluating an XPath query from a given context node returns a set of matching nodes

XPath Query Example #2

parent::company/descendant::staff[not parent::manager]



XML, Schemas, XPath Static Analysis The Logical Approach

Motivation: Safe and Efficient XML Processing

- XPath plays a central role in key standards (e.g. XSLT, XQuery...)
- Static analysis of XPath has become crucial

Basic Static Analysis Tasks

- XPath typing
- 2 XPath query comparisons
 - query containment, emptiness, overlap, equivalence

Main Applications

- Static analysis of host languages (e.g., type-checking of XSLT, XQuery), error-detection, optimization
- Checking integrity constraints in XML databases, XML security
- Objective: effectively analyzing XPath queries with schemas

A logic for finite trees Satisfiability-Testing Algorithm Conclusion XML, Schemas, XPath Static Analysis The Logical Approach

Challenges

• Query comparisons and typing are undecidable for the complete XPath language

Open Questions

- What are the largest XPath fragments with decidable static analysis?
- Which fragments can be effectively decided in practice?
- Is there a generic algorithm able to solve all related XPath decision problems?

Difficulties

- Considered XPath operators and their combination (e.g., reverse axes, recursion)
- Checking properties on a possibly infinite set of XML documents
- Very high computational complexity

A logic for finite trees Satisfiability-Testing Algorithm Conclusion XML, Schemas, XPath Static Analysis The Logical Approach

Challenges

• Query comparisons and typing are undecidable for the complete XPath language

Open Questions

- What are the largest XPath fragments with decidable static analysis?
- Which fragments can be effectively decided in practice?
- Is there a generic algorithm able to solve all related XPath decision problems?

Difficulties

- Considered XPath operators and their combination (e.g., reverse axes, recursion)
- Checking properties on a possibly infinite set of XML documents
- Very high computational complexity

A logic for finite trees Satisfiability-Testing Algorithm Conclusion XML, Schemas, XPath Static Analysis The Logical Approach

Challenges

• Query comparisons and typing are undecidable for the complete XPath language

Open Questions

- What are the largest XPath fragments with decidable static analysis?
- Which fragments can be effectively decided in practice?
- Is there a generic algorithm able to solve all related XPath decision problems?

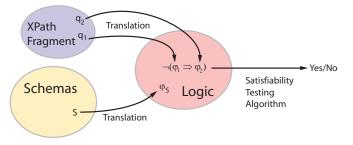
Difficulties

- Considered XPath operators and their combination (e.g., reverse axes, recursion)
- Checking properties on a possibly infinite set of XML documents
- Very high computational complexity

XML, Schemas, XPath Static Analysis The Logical Approach

The Logical Approach: Overview

- Find an appropriate logic for reasoning on XML trees
- Formulate the problem into the logic and test satisfiability



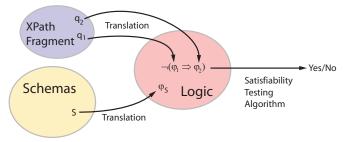
Critical Aspects

- The logic must be expressive enough
- The algorithm must be effective in practice for XML translations

XML, Schemas, XPath Static Analysis The Logical Approach

The Logical Approach: Overview

- Find an appropriate logic for reasoning on XML trees
- Formulate the problem into the logic and test satisfiability

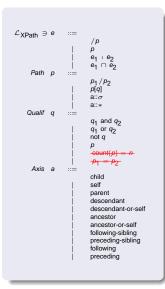


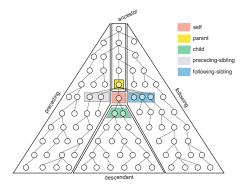
Critical Aspects

- The logic must be expressive enough
- On the algorithm must be effective in practice for XML translations

A logic for finite trees Satisfiability-Testing Algorithm Conclusion XML, Schemas, XPath Static Analysis The Logical Approach

A Large XPath Fragment



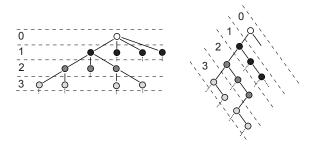


- Multi-directional tree navigation
- Node selection and path existence
- Almost full XPath

XML, Schemas, XPath Static Analysis The Logical Approach

Models for XML Documents

- Finite ordered unranked trees, one label per node
- Bijective encoding of unranked trees as binary trees



XML documents seen as finite ordered binary trees

- Without loss of generality
- XPath navigation must be expressed in binary style

A logic for finite trees Satisfiability-Testing Algorithm Conclusion XML, Schemas, XPath Static Analysis The Logical Approach

Candidate Logics for XML

First-Order Logic (FO) and variants (over trees)

- \checkmark close to \mathcal{L}_{XPath} expressive power
- × do not fully capture schemas
- In Monadic Second-Order Logic (WS2S)
 - extends FO with quantification over sets of nodes
 - \checkmark captures \mathcal{L}_{XPath} and finite tree automata
 - × complexity for satisfiability: hyperexponential
 - × blow-ups observable for XPath containment
- Output: Alternation-free fragment of the μ-calculus (AFMC)
 - \checkmark supports schemas and XPath (when extended with converse)
 - $\sqrt{}$ complexity for satisfiability: $2^{O(n \cdot \log(n))}$ (with converse)
 - × the solver a priori explores Kripke structures
 - imes formulas are more general than needed for XML
 - \times low performance in practice (does not scale to large instances)

A logic for finite trees Satisfiability-Testing Algorithm Conclusion XML, Schemas, XPath Static Analysis The Logical Approach

Candidate Logics for XML

- First-Order Logic (FO) and variants (over trees)
 - \checkmark close to \mathcal{L}_{XPath} expressive power
 - × do not fully capture schemas
- Monadic Second-Order Logic (WS2S)
 - extends FO with quantification over sets of nodes
 - \checkmark captures \mathcal{L}_{XPath} and finite tree automata
 - × complexity for satisfiability: hyperexponential
 - × blow-ups observable for XPath containment
- Solution Strain Strain Strain (AFMC) (Second Strain Str
 - \checkmark supports schemas and XPath (when extended with converse)
 - $\sqrt{}$ complexity for satisfiability: $2^{O(n \cdot \log(n))}$ (with converse)
 - × the solver a priori explores Kripke structures
 - imes formulas are more general than needed for XML
 - imes low performance in practice (does not scale to large instances)

A logic for finite trees Satisfiability-Testing Algorithm Conclusion XML, Schemas, XPath Static Analysis The Logical Approach

Candidate Logics for XML

- First-Order Logic (FO) and variants (over trees)
 - \checkmark close to \mathcal{L}_{XPath} expressive power
 - × do not fully capture schemas
- In Monadic Second-Order Logic (WS2S)
 - extends FO with quantification over sets of nodes
 - \checkmark captures \mathcal{L}_{XPath} and finite tree automata
 - × complexity for satisfiability: hyperexponential
 - × blow-ups observable for XPath containment
- Solution Alternation-free fragment of the μ -calculus (AFMC)
 - supports schemas and XPath (when extended with converse)
 - \checkmark complexity for satisfiability: $2^{O(n \cdot \log(n))}$ (with converse)
 - × the solver a priori explores Kripke structures
 - × formulas are more general than needed for XML
 - × low performance in practice (does not scale to large instances)

Formulas XML Embeddings

Contribution Idea

- design a specific logic whose models are finite trees
- design the algorithm for satisfiability-testing

Remark #1

Finite tree models

- avoid exploring useless models
- allow a bottom-up algorithm for satisfiability-testing

Remark #2

Only finite recursion is of interest for XPath and Schemas

Formulas XML Embeddings

Contribution Idea

- design a specific logic whose models are finite trees
- design the algorithm for satisfiability-testing

Remark #1

- Finite tree models
 - avoid exploring useless models
 - allow a bottom-up algorithm for satisfiability-testing

Remark #2

Only finite recursion is of interest for XPath and Schemas

Formulas XML Embeddings

Formulas of the \mathcal{L}_{μ} Logic

$$\begin{array}{cccc} \mathcal{L}_{\mu} \ni \varphi, \psi & ::= & & & \\ & & & & \\ & & & \sigma & | & \neg \sigma \\ & & & \gamma^{\bullet} & | & \neg \gamma^{\bullet} \\ & & & \varphi \lor \psi \\ & & & \varphi \land \psi \\ & & & & \langle \alpha \rangle \varphi & | & \neg \langle \alpha \rangle \top \\ & & & & \\ & & & X \\ & & & & \mu X.\varphi \\ & & & & \mu X.\varphi \end{array}$$

formula true atomic prop (negated) context (negated) disjunction conjunction existential (negated) variable unary fixpoint *n*-ary fixpoint

Closed formulas

Formulas XML Embeddings

Semantics of \mathcal{L}_{μ}

• The set of models of a formula φ is the set of finite binary trees for which φ is satisfied on some node

- $\mu Z.\varphi$: finite recursion
- {1,2} required for forward axes!
- {1,2} required for reverse axes!
- Converse programs are crucial
- $t_{\mathsf{xpath}}(\boldsymbol{e},\chi):\mathcal{L}_{\mathsf{XPath}} imes \mathcal{L}_{\mu}
 ightarrow \mathcal{L}_{\mu}$
- χ is the latest navigation step

Formulas XML Embeddings

Semantics of \mathcal{L}_{μ}

• The set of models of a formula φ is the set of finite binary trees for which φ is satisfied on some node

Translating following-sibling::a

in \mathcal{L}_{μ} :

- $\mu Z.\varphi$: finite recursion
- $\{\overline{1},\overline{2}\}$ required for forward axes!
- {1,2} required for reverse axes!
- Converse programs are crucial
- $t_{\mathsf{xpath}}(e,\chi):\mathcal{L}_{\mathsf{XPath}} imes\mathcal{L}_{\mu} o\mathcal{L}_{\mu}$
- χ is the latest navigation step

Formulas XML Embeddings

Semantics of \mathcal{L}_{μ}

• The set of models of a formula φ is the set of finite binary trees for which φ is satisfied on some node

Translating	following-sibling::a
in \mathcal{L}_{μ} :	а

- $\mu Z.\varphi$: finite recursion
- {1,2} required for forward axes!
- {1,2} required for reverse axes!
- Converse programs are crucial
- $t_{\text{xpath}}(\boldsymbol{e},\chi):\mathcal{L}_{\text{XPath}}\times\mathcal{L}_{\mu}\to\mathcal{L}_{\mu}$
- χ is the latest navigation step

Formulas XML Embeddings

Semantics of \mathcal{L}_{μ}

• The set of models of a formula φ is the set of finite binary trees for which φ is satisfied on some node

Translating	following-sibling::a
in \mathcal{L}_{μ} :	а

C

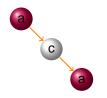
- $\{\overline{1},\overline{2}\}$ required for forward axes!
- {1,2} required for reverse axes!
- Converse programs are crucial
- $t_{\text{xpath}}(\boldsymbol{e}, \chi) : \mathcal{L}_{\text{XPath}} \times \mathcal{L}_{\mu} \to \mathcal{L}_{\mu}$
- χ is the latest navigation step

Formulas XML Embeddings

Semantics of \mathcal{L}_{μ}

• The set of models of a formula φ is the set of finite binary trees for which φ is satisfied on some node

Translating	following-sibling::a
in \mathcal{L}_{μ} :	а



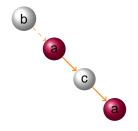
- $\mu Z.\varphi$: finite recursion
- $\{\overline{1},\overline{2}\}$ required for forward axes!
- {1,2} required for reverse axes!
- Converse programs are crucial
- $t_{\text{xpath}}(e, \chi) : \mathcal{L}_{\text{XPath}} \times \mathcal{L}_{\mu} \to \mathcal{L}_{\mu}$
- χ is the latest navigation step

Formulas XML Embeddings

Semantics of \mathcal{L}_{μ}

• The set of models of a formula φ is the set of finite binary trees for which φ is satisfied on some node

Translating	following-sibling::a
in \mathcal{L}_{μ} :	а



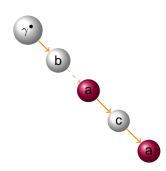
- $\mu Z.\varphi$: finite recursion
- $\{\overline{1},\overline{2}\}$ required for forward axes!
- {1,2} required for reverse axes!
- Converse programs are crucial
- $t_{\text{xpath}}(e, \chi) : \mathcal{L}_{\text{XPath}} \times \mathcal{L}_{\mu} \to \mathcal{L}_{\mu}$
- χ is the latest navigation step

Formulas XML Embeddings

Semantics of \mathcal{L}_{μ}

• The set of models of a formula φ is the set of finite binary trees for which φ is satisfied on some node

Translating	following-sibling::a
in \mathcal{L}_{μ} :	$oldsymbol{a} \wedge ig(\mu Z. ig\langle \overline{f 2} ig angle \gamma^ullet ee ig\langle \overline{f 2} ig angle Z ig)$



• $\mu Z.\varphi$: finite recursion

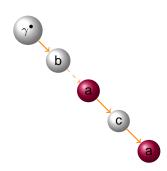
- $\{\overline{1},\overline{2}\}$ required for forward axes!
- {1,2} required for reverse axes!
- Converse programs are crucial
- $t_{\text{xpath}}(e,\chi):\mathcal{L}_{\text{XPath}} imes\mathcal{L}_{\mu} o\mathcal{L}_{\mu}$
- χ is the latest navigation step

Formulas XML Embeddings

Semantics of \mathcal{L}_{μ}

• The set of models of a formula φ is the set of finite binary trees for which φ is satisfied on some node

Translatingfollowing-sibling::a/preceding-sibling::bin \mathcal{L}_{μ} : $a \land (\mu Z. \langle \overline{2} \rangle \gamma^{\bullet} \lor \langle \overline{2} \rangle Z)$



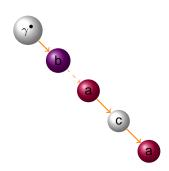
- $\mu Z.\varphi$: finite recursion
- $\{\overline{1},\overline{2}\}$ required for forward axes!
- {1,2} required for reverse axes!
- Converse programs are crucial
- $t_{\text{xpath}}(e,\chi): \mathcal{L}_{\text{XPath}} imes \mathcal{L}_{\mu} o \mathcal{L}_{\mu}$
- χ is the latest navigation step

Formulas XML Embeddings

Semantics of \mathcal{L}_{μ}

• The set of models of a formula φ is the set of finite binary trees for which φ is satisfied on some node

Translatingfollowing-sibling::a/preceding-sibling::bin \mathcal{L}_{μ} : $b \land [\mu Y. \langle 2 \rangle (a \land (\mu Z. \langle \overline{2} \rangle \gamma^{\bullet} \lor \langle \overline{2} \rangle Z)) \lor \langle 2 \rangle Y]$



• $\mu Z.\varphi$: finite recursion

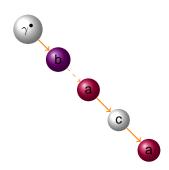
- $\{\overline{1},\overline{2}\}$ required for forward axes!
- {1,2} required for reverse axes!
- Converse programs are crucial
- $t_{\text{xpath}}(e,\chi): \mathcal{L}_{\text{XPath}} imes \mathcal{L}_{\mu}
 ightarrow \mathcal{L}_{\mu}$
- χ is the latest navigation step • Initially: $\chi = \gamma^*$

Formulas XML Embeddings

Semantics of \mathcal{L}_{μ}

• The set of models of a formula φ is the set of finite binary trees for which φ is satisfied on some node

Translatingfollowing-sibling::a/preceding-sibling::bin \mathcal{L}_{μ} : $b \land [\mu Y. \langle 2 \rangle (a \land (\mu Z. \langle \overline{2} \rangle \gamma^{\bullet} \lor \langle \overline{2} \rangle Z)) \lor \langle 2 \rangle Y]$



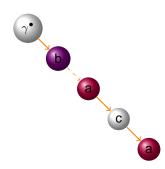
- $\mu Z.\varphi$: finite recursion
- $\{\overline{1}, \overline{2}\}$ required for forward axes!
- {1,2} required for reverse axes!
- Converse programs are crucial
- t_{xpath}(e, χ) : L_{XPath} × L_μ → L_μ
 χ is the latest navigation step
 Initially: χ = γ*

Formulas XML Embeddings

Semantics of \mathcal{L}_{μ}

• The set of models of a formula φ is the set of finite binary trees for which φ is satisfied on some node

Translatingfollowing-sibling::a/preceding-sibling::bin \mathcal{L}_{μ} : $b \land [\mu Y. \langle 2 \rangle (a \land (\mu Z. \langle \overline{2} \rangle \gamma^{\bullet} \lor \langle \overline{2} \rangle Z)) \lor \langle 2 \rangle Y]$



- $\mu Z.\varphi$: finite recursion
- $\{\overline{1}, \overline{2}\}$ required for forward axes!
- {1,2} required for reverse axes!
- Converse programs are crucial
- $t_{xpath}(e,\chi): \mathcal{L}_{XPath} imes \mathcal{L}_{\mu}
 ightarrow \mathcal{L}_{\mu}$
- χ is the latest navigation step
 - Initially: $\chi = \gamma^{\bullet}$

Formulas XML Embeddings

XPath and Closure under Negation of \mathcal{L}_{μ}

A Very Important Property

- \mathcal{L}_{XPath} translations are never of the form: $\mu X. \langle \alpha \rangle X \lor \langle \overline{\alpha} \rangle X$
- *L*_{XPath} translations are always cycle-free
 - no occurrence of both a path and its converse between a fixpoint binder and its variable
- Restricting L_µ to cycle-free formulas ensures closure under negation of recursion
 - The negation of finite recursion remains finite recursion
 - $\neg \varphi$ is expressible in \mathcal{L}_{μ} for all $\varphi \in \mathcal{L}_{\mu}$
 - Computable using De Morgan's laws, e.g.

 $\neg \langle \alpha \rangle \varphi = \neg \langle \alpha \rangle \top \lor \langle \alpha \rangle \neg \varphi$, and $\neg \mu X.\varphi = \mu X.\neg \varphi \{ \neg^X / X \}$

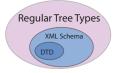
Crucial for implication (e.g., XPath containment)

Formulas XML Embeddings

Translating Schemas into \mathcal{L}_{μ}

Models for Schemas

 Schema languages correspond to subclasses of *regular tree types* [Murata et al., 2005]



Translating Regular Tree Types into \mathcal{L}_{μ}

- The binary encoding of trees also applies to tree types
- Binary tree type expressions model schemas without loss of generality
- They can be translated into the logic $(t_{schema}(\cdot) : \mathcal{L}_{type} \rightarrow \mathcal{L}_{\mu})$
 - the *n*-ary fixpoint binder is used for mutually recursive definitions
 - only forward programs $\alpha \in \{1,2\}$ are used

Formulas XML Embeddings

Formulating Decision Problems to be Solved

- $t_{\text{xpath}}(e, \chi) : \mathcal{L}_{\text{XPath}} \times \mathcal{L}_{\mu} \rightarrow \mathcal{L}_{\mu} \text{ and } t_{\text{schema}}(T) : \mathcal{L}_{\text{type}} \rightarrow \mathcal{L}_{\mu}$
- *L_µ* closed under boolean operations
- XPath expressions $e_1, ..., e_n$ and schemas $T_1, ..., T_n$
- γ[•] for comparing XPath expressions from the same context

Many Decision Problems Can be Formulated

- XPath emptiness: $t_{xpath}(e_1, \gamma^{\bullet} \wedge t_{schema}(T_1))$
- XPath typing: $t_{xpath}(e_1, \gamma^{\bullet} \wedge t_{schema}(T_1)) \wedge \neg t_{schema}(T_2)$
 - if the formula is unsatisfiable then all nodes selected by e₁ under type constraint T₁ are included in the type T₂
- XPath containment:

 $t_{\text{xpath}}(e_1, \gamma^{\bullet} \land t_{\text{schema}}(T_1)) \land \neg t_{\text{xpath}}(e_2, \gamma^{\bullet} \land t_{\text{schema}}(T_2))$

• XPath equivalence, XPath overlap

Principles Implementation Techniques

Deciding \mathcal{L}_{μ} Satisfiability

• Does a formula $\psi \in \mathcal{L}_{\mu}$ admit a satisfying finite binary tree?

Principles

- Enumerate finite binary trees, look for a node on which ψ holds
- The truth status of a formula ψ can be determined from the status of a few of its subformulas
- The Fisher-Ladner Closure cl(ψ) = { subformula of ψ where fixpoints are unwounded once }
- We focus on a subset Lean(ψ) \subseteq cl(ψ):
 - atomic propositions (alphabet symbols in ψ)
 - existential formulas

Principles Implementation Techniques

Emptiness of XPath expression: self::b/parent::a

•
$$\psi = a \land \langle 1 \rangle \varphi$$
 with $\varphi = \mu X.b \lor \langle 2 \rangle X$

$$\mathbf{b} \ \exp(\varphi) = \mathbf{b} \lor \langle \mathbf{2} \rangle \varphi$$
$$\mathsf{Lean}(\psi) = \begin{cases} \langle \mathbf{1} \rangle \top, \\ \langle \mathbf{1} \rangle \top, \\ \langle \mathbf{2} \rangle \top, \\ \langle \mathbf{\overline{2}} \rangle \top, \\ \sigma, \\ \mathbf{a}, \\ \mathbf{b}, \\ \langle \mathbf{1} \rangle \varphi, \\ \langle \mathbf{2} \rangle \varphi \end{cases} \end{cases}$$

Example

 The atomic proposition "σ" simulates an infinite alphabet (σ ≡ ¬a ∧ ¬b)

Principles Implementation Techniques

Nodes of the Searched Binary Tree

- The satisfiability-testing algorithm attempts to build a satisfying finite binary tree such that some node satisfies ψ
- A node is a ψ-type: a set t ⊆ Lean(ψ) which satisfies constraints, e.g.:
 - modal consistency: $\forall \langle \alpha \rangle \varphi \in \text{Lean}(\psi), \langle \alpha \rangle \varphi \in t \Rightarrow \langle \alpha \rangle \top \in t$
 - tree node: $\left\langle \overline{1} \right\rangle \top \notin t \lor \left\langle \overline{2} \right\rangle \top \notin t$
 - labeled with exactly one atomic proposition $\sigma \in t$
- a ψ -type valuates any formula in cl(ψ) via a relation $\dot{\in}$
 - for instance $\varphi_1 \land \varphi_2 \stackrel{.}{\in} t$ iff $\varphi_1 \stackrel{.}{\in} t$ and $\varphi_2 \stackrel{.}{\in} t$

Principles Implementation Techniques

Satisfiability-Testing Algorithm: Principles

Bottom-up Construction of a Tree of ψ -types

- A set T of ψ-types is repeatedly updated (least fixpoint computation)
 - Initially: Ø
 - Step 1 : all possible leaves are added
 - Step i : all possible parent nodes of current nodes are added

Termination

- If ψ is present in some root node, then ψ is satisfiable
- The algorithm returns a satisfying model as soon as it is found
- Otherwise, it terminates when no more node can be added
 - all roots of all buidable finite trees have been added

Principles Implementation Techniques

Example

$\mathsf{Lean}(\psi) = \left\{ \langle 1 \rangle \top, \ \left\langle \overline{1} \right\rangle \top, \ \left\langle 2 \right\rangle \top, \ \left\langle \overline{2} \right\rangle \top, \ \sigma, \ a, \ b, \ \left\langle 1 \right\rangle \varphi, \ \left\langle 2 \right\rangle \varphi \right\}$

 $\psi = a \land \langle 1 \rangle \varphi$ with $\varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

$\mathsf{Lean}(\psi) = \left\{ \langle 1 \rangle \top, \ \langle \overline{1} \rangle \top, \ \langle 2 \rangle \top, \ \langle \overline{2} \rangle \top, \ \sigma, \ a, \ b, \ \langle 1 \rangle \varphi, \ \langle 2 \rangle \varphi \right\}$

 $\psi = a \land \langle 1 \rangle \varphi$ with $\varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

$$\mathsf{Lean}(\psi) = \left\{ \langle \mathsf{1} \rangle \top, \ \left\langle \overline{\mathsf{1}} \right\rangle \top, \ \left\langle \mathsf{2} \right\rangle \top, \ \left\langle \mathsf{2} \right\rangle \top, \ \sigma, \ \mathbf{a}, \ \mathbf{b}, \ \left\langle \mathsf{1} \right\rangle \varphi, \ \left\langle \mathsf{2} \right\rangle \varphi \right\}$$

$$\psi = a \land \langle 1 \rangle \varphi$$
 with $\varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

$$T^0 = \emptyset$$

$$\mathsf{Lean}(\psi) = \left\{ \langle \mathsf{1} \rangle \top, \ \left\langle \overline{\mathsf{1}} \right\rangle \top, \ \left\langle \mathsf{2} \right\rangle \top, \ \left\langle \overline{\mathsf{2}} \right\rangle \top, \ \sigma, \ \textbf{\textit{a}}, \ \textbf{\textit{b}}, \ \left\langle \mathsf{1} \right\rangle \varphi, \ \left\langle \mathsf{2} \right\rangle \varphi \right\}$$

$$\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$$

Principles Implementation Techniques

$$T^1 = ?$$

$$T^0 = \emptyset$$

$$\mathsf{Lean}(\psi) = \left\{ \langle \mathbf{1} \rangle \top, \ \langle \overline{\mathbf{1}} \rangle \top, \ \langle \mathbf{2} \rangle \top, \ \langle \overline{\mathbf{2}} \rangle \top, \ \sigma, \ \mathbf{a}, \ \mathbf{b}, \ \langle \mathbf{1} \rangle \varphi, \ \langle \mathbf{2} \rangle \varphi \right\}$$

$$\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$$

Principles Implementation Techniques

Example

$$T^{1} = \{ \begin{array}{c} \sigma \\ \sigma \end{array} \begin{array}{c} \sigma \\ \sigma \end{array} \begin{array}{c} \sigma \\ \sigma \end{array} \begin{array}{c} a \\ a \end{array} \begin{array}{c} a \\ a \end{array} \begin{array}{c} a \\ \sigma \end{array} \begin{array}{c} b \\ b \end{array} \begin{array}{c} b \\ b \end{array} \begin{array}{c} b \\ b \end{array} \end{array} \right\}$$
$$T^{0} = \emptyset$$
$$een(\psi) = \{ \langle 1 \rangle \top, \ \langle \overline{1} \rangle \top, \ \langle 2 \rangle \top, \ \langle \overline{2} \rangle \top, \ \sigma, \ a, \ b, \ \langle 1 \rangle \varphi, \ \langle 2 \rangle \varphi \}$$

 $\psi = a \land \langle 1 \rangle \varphi$ with $\varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Example

Principles Implementation Techniques

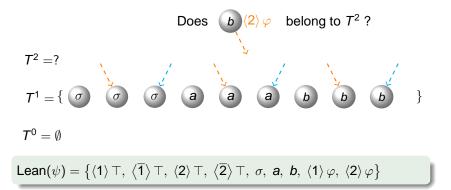
$T^{2} = ?$ $T^{1} = \{ \sigma \sigma \sigma \sigma a a a b b b b c$ $T^{0} = \emptyset$

$$\mathsf{Lean}(\psi) = \left\{ \langle \mathbf{1} \rangle \top, \ \langle \overline{\mathbf{1}} \rangle \top, \ \langle \mathbf{2} \rangle \top, \ \langle \mathbf{2} \rangle \top, \ \sigma, \ \mathbf{a}, \ \mathbf{b}, \ \langle \mathbf{1} \rangle \varphi, \ \langle \mathbf{2} \rangle \varphi \right\}$$

 $\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

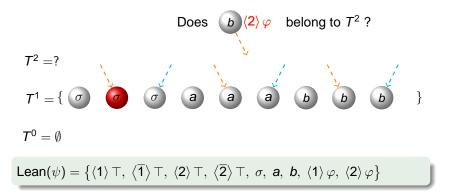
Example



 $\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

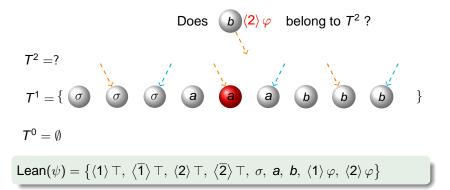
Example



 $\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

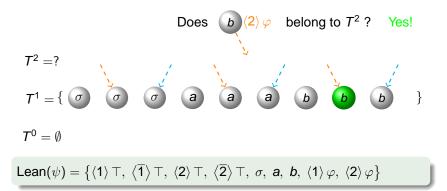
Example



 $\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

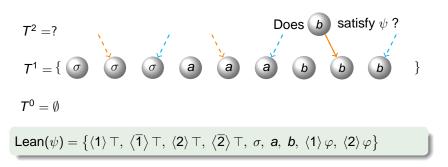
Example



 $\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

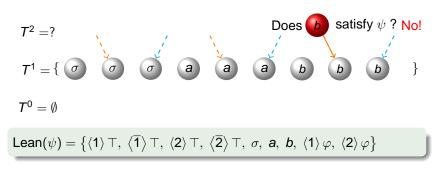
Example



 $\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

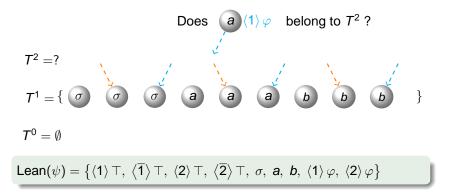
Example



 $\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

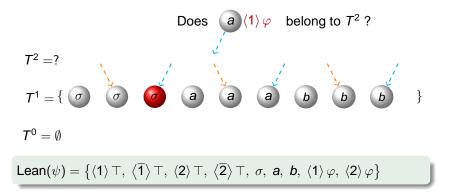
Example



 $\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

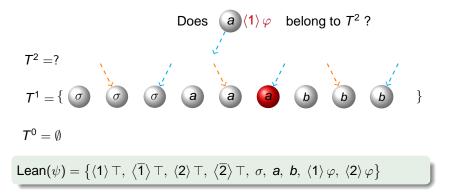
Example



 $\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

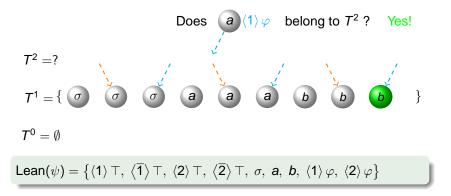
Example



 $\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

Example



 $\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

$$T^0 = \emptyset$$

Example

$$\mathsf{Lean}(\psi) = \left\{ \langle \mathbf{1} \rangle \top, \ \langle \overline{\mathbf{1}} \rangle \top, \ \langle \mathbf{2} \rangle \top, \ \langle \overline{\mathbf{2}} \rangle \top, \ \sigma, \ \mathbf{a}, \ \mathbf{b}, \ \langle \mathbf{1} \rangle \varphi, \ \langle \mathbf{2} \rangle \varphi \right\}$$

$$\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$$

Emptiness check of XPath expression self::b/parent::a

satisfy

 ψ ?

а

Example

Principles Implementation Techniques

$T^{2} = ?$ $T^{1} = \{ \sigma \sigma \sigma \sigma a a a b b b \}$ $T^{0} = \emptyset$ $Lean(\psi) = \{ \langle 1 \rangle \top, \langle \overline{1} \rangle \top, \langle 2 \rangle \top, \langle \overline{2} \rangle \top, \sigma, a, b, \langle 1 \rangle \varphi, \langle 2 \rangle \varphi \}$

$$\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$$

Example

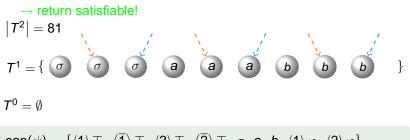
Principles Implementation Techniques

$|T^{2}| = 81$ $T^{1} = \{ \bigcirc & \bigcirc & \bigcirc & \bigcirc & a & a & a & b & b & b & b \\ T^{0} = \emptyset$ $\text{Lean}(\psi) = \{ \langle 1 \rangle \top, \ \langle \overline{1} \rangle \top, \ \langle 2 \rangle \top, \ \langle \overline{2} \rangle \top, \ \sigma, \ a, \ b, \ \langle 1 \rangle \varphi, \ \langle 2 \rangle \varphi \}$

$$\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$$

Principles Implementation Techniques

Example



$$\mathsf{Lean}(\psi) = \{ \langle 1 \rangle \top, \langle 1 \rangle \top, \langle 2 \rangle \top, \langle 2 \rangle \top, \sigma, a, b, \langle 1 \rangle \varphi, \langle 2 \rangle \varphi \}$$

 $\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Example

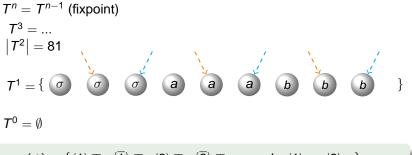
Principles Implementation Techniques

$T^{3} = \dots$ $|T^{2}| = 81$ $T^{1} = \{ \bigcirc & \bigcirc & \bigcirc & a & a & a & b & b & b & \\ T^{0} = \emptyset$ $\text{Lean}(\psi) = \{ \langle 1 \rangle \top, \ \langle \overline{1} \rangle \top, \ \langle 2 \rangle \top, \ \langle \overline{2} \rangle \top, \ \sigma, \ a, \ b, \ \langle 1 \rangle \varphi, \ \langle 2 \rangle \varphi \}$

$$\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$$

Principles Implementation Techniques

Example



$$\mathsf{Lean}(\psi) = \left\{ \langle \mathsf{1} \rangle \top, \ \langle \mathsf{1} \rangle \top, \ \langle \mathsf{2} \rangle \top, \ \langle \mathsf{2} \rangle \top, \ \sigma, \ \mathsf{a}, \ \mathsf{b}, \ \langle \mathsf{1} \rangle \varphi, \ \langle \mathsf{2} \rangle \varphi \right\}$$

 $\psi = a \land \langle 1 \rangle \varphi \text{ with } \varphi = \mu X.b \lor \langle 2 \rangle X \equiv \exp(\varphi) = b \lor \langle 2 \rangle \varphi$

Principles Implementation Techniques

Correctness & Complexity

Theorem

The satisfiability problem for a formula $\psi \in \mathcal{L}_{\mu}$ is decidable in time $2^{O(n)}$ where $n = |Lean(\psi)|$.

Theorem

For $e \in \mathcal{L}_{XPath}$ and a regular tree type expression T, the translations of e and T in \mathcal{L}_{μ} are linear in the size of e and T.

Corollary

XPath decision problems (e.g., typing, containment, emptiness, equivalence) in presence of schemas can be decided in time complexity 2^{O(n)}.

Principles Implementation Techniques

Correctness & Complexity

Theorem

The satisfiability problem for a formula $\psi \in \mathcal{L}_{\mu}$ is decidable in time $2^{O(n)}$ where $n = |Lean(\psi)|$.

Theorem

For $e \in \mathcal{L}_{XPath}$ and a regular tree type expression T, the translations of e and T in \mathcal{L}_{μ} are linear in the size of e and T.

Corollary

XPath decision problems (e.g., typing, containment, emptiness, equivalence) in presence of schemas can be decided in time complexity $2^{O(n)}$.

Principles Implementation Techniques

Solver Implementation Techniques

Idea: Implicit Representation

- The *Tⁱ*s can be represented by boolean expressions
- Set-theoretic operations: composition of boolean expressions
- A set of ψ-types is encoded by a Binary Decision Diagram (BDD) [Bryant, 1986]

Critical Optimizations

- Conjunctive partitioning and early quantification (aims at composing smaller BDDs)
- Good initial order of BDD variables

Principles Implementation Techniques

Implementation

- System fully implemented (Java + Buddy C BDD library)
- Implementation available: http://wam.inrialpes.fr/xml/

Some Examples and Demo

DTD of the W3C SMIL 1.0 recommendation

Question	Answer	Time (ms)
/descendant::video ⊆ /descendant::video[parent::seq]?	no	125
/descendant::audio[preceding-sibling::video] $\neq \emptyset$?	yes	109
$child::switch[ancestor::head] \subseteq descendant::switch?$	yes	105

Summary of Contributions Perspectives

Main Contributions

A tree logic offering an interesting balance

- expressiveness: regular tree types + multi-directional navigation
 + finite recursion
- complexity for satisfiability: $2^{O(n)}$ where $n = |\text{Lean}(\psi)|$
- Compilation of main XML concepts: linear
- extensibility warranted (sublogic of the AFMC with converse)

A system for solving basic decision problems involving XPath queries and schemas

- The largest XPath fragment effectively treated so far for static analysis
- The system benefits from the boolean closure of the logic
- Efficient implementation in practice

Summary of Contributions Perspectives

Future Work

Extending the Tree Logic

- Decidable counting constraints
- Decidable data-value comparisons

Applications

- Static type-checking of XSLT, XQuery
- Optimization
- XML Security
- Checking integrity constaints in XML databases
- Query comparison in P2P networks

Summary of Contributions Perspectives

Thank you!

http://wam.inrialpes.fr/xml/

Summary of Contributions Perspectives

Bryant, R. E. (1986). Graph-based algorithms for boolean function manipulation. *IEEE Transactions on Computers*, 35(8):677–691.

Murata, M., Lee, D., Mani, M., and Kawaguchi, K. (2005). Taxonomy of XML schema languages using formal language theory.

ACM Transactions on Internet Technology, 5(4):660–704.