
Logics for XML

Pierre Genevès

Institut National Polytechnique de Grenoble
Institut National de Recherche en Informatique et Automatique

Ph.D Defense – December 4th 2006

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Outline

1 Introduction
XML, Schemas, XPath
Static Analysis
The Logical Approach

2 A logic for finite trees
Formulas
XML Embeddings

3 Satisfiability-Testing Algorithm
Principles
Implementation Techniques

4 Conclusion
Summary of Contributions
Perspectives

2 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

XML and Schemas

Extensible Markup Language (XML)

A markup langage for representing tree structures

Representation is independent from processing

Schemas

Each application defines constraints on documents using a
schema

Several formalisms exist for defining schemas (e.g., DTD, XML
Schema, Relax NG)

3 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

XPath: The Standard Query Language

For navigating and extracting information from XML trees

Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example

4 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

XPath: The Standard Query Language

For navigating and extracting information from XML trees

Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #1

child ::division/child ::group

4 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

XPath: The Standard Query Language

For navigating and extracting information from XML trees

Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #1

child ::division/child ::group

company

division

group manager

staff site staff

division

group group

staff unit site staff

department

manager

staff
4 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

XPath: The Standard Query Language

For navigating and extracting information from XML trees

Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #1

child ::division/child ::group

company•

division

group manager

staff site staff

division

group group

staff unit site staff

department

manager

staff
4 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

XPath: The Standard Query Language

For navigating and extracting information from XML trees

Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #1

child ::division/child ::group

company•

division

group manager

staff site staff

division

group group

staff unit site staff

department

manager

staff
4 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

XPath: The Standard Query Language

For navigating and extracting information from XML trees

Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #2

parent ::company/descendant ::staff[not parent ::manager]

company

division

group manager

staff site staff

division

group group

staff unit site staff

department

manager

staff
4 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

XPath: The Standard Query Language

For navigating and extracting information from XML trees

Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #2

parent ::company/descendant ::staff[not parent ::manager]

company

division

group manager

staff site staff

division

group group

staff unit site staff

department•

manager

staff
4 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

XPath: The Standard Query Language

For navigating and extracting information from XML trees

Evaluating an XPath query from a given context node returns a
set of matching nodes

XPath Query Example #2

parent ::company/descendant ::staff[not parent ::manager]

company

division

group manager

staff site staff

division

group group

staff unit site staff

department•

manager

staff
4 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

Motivation: Safe and Efficient XML Processing

XPath plays a central role in key standards (e.g. XSLT, XQuery...)

Static analysis of XPath has become crucial

Basic Static Analysis Tasks

1 XPath typing
2 XPath query comparisons

query containment, emptiness, overlap, equivalence

Main Applications

Static analysis of host languages (e.g., type-checking of XSLT,
XQuery), error-detection, optimization

Checking integrity constraints in XML databases, XML security

Objective: effectively analyzing XPath queries with schemas

5 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

Challenges

Query comparisons and typing are undecidable for the complete
XPath language

Open Questions

What are the largest XPath fragments with decidable static
analysis?

Which fragments can be effectively decided in practice?

Is there a generic algorithm able to solve all related XPath
decision problems?

Difficulties

Considered XPath operators and their combination (e.g., reverse
axes, recursion)

Checking properties on a possibly infinite set of XML documents

Very high computational complexity
6 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

Challenges

Query comparisons and typing are undecidable for the complete
XPath language

Open Questions

What are the largest XPath fragments with decidable static
analysis?

Which fragments can be effectively decided in practice?

Is there a generic algorithm able to solve all related XPath
decision problems?

Difficulties

Considered XPath operators and their combination (e.g., reverse
axes, recursion)

Checking properties on a possibly infinite set of XML documents

Very high computational complexity
6 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

Challenges

Query comparisons and typing are undecidable for the complete
XPath language

Open Questions

What are the largest XPath fragments with decidable static
analysis?

Which fragments can be effectively decided in practice?

Is there a generic algorithm able to solve all related XPath
decision problems?

Difficulties

Considered XPath operators and their combination (e.g., reverse
axes, recursion)

Checking properties on a possibly infinite set of XML documents

Very high computational complexity
6 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

The Logical Approach: Overview

Find an appropriate logic for reasoning on XML trees

Formulate the problem into the logic and test satisfiability

XPath
Fragment

Schemas Logic

q1

q2

Yes/No
Satisfiability
Testing
Algorithm

¬(ϕ ⇒ ϕ) 21

S

ϕS

Translation

Translation

Critical Aspects

1 The logic must be expressive enough
2 The algorithm must be effective in practice for XML translations

7 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

The Logical Approach: Overview

Find an appropriate logic for reasoning on XML trees

Formulate the problem into the logic and test satisfiability

XPath
Fragment

Schemas Logic

q1

q2

Yes/No
Satisfiability
Testing
Algorithm

¬(ϕ ⇒ ϕ) 21

S

ϕS

Translation

Translation

Critical Aspects

1 The logic must be expressive enough
2 The algorithm must be effective in practice for XML translations

7 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

A Large XPath Fragment

LXPath 3 e ::=
/p

| p
| e1 p e2
| e1 ∩ e2

Path p ::=
p1/p2

| p[q]
| a::σ
| a::∗

Qualif q ::=
q1 and q2

| q1 or q2
| not q
| p
| count(p) = n
| p1 = p2

Axis a ::=
child

| self
| parent
| descendant
| descendant-or-self
| ancestor
| ancestor-or-self
| following-sibling
| preceding-sibling
| following
| preceding

self
ancestor

descendant
pr

ec
ed

ing

following

following-sibling

preceding-sibling

child

parent

Multi-directional tree navigation

Node selection and path
existence

Almost full XPath

8 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

Models for XML Documents

Finite ordered unranked trees, one label per node

Bijective encoding of unranked trees as binary trees

1
2

3

0

0
1
2
3

XML documents seen as finite ordered binary trees
Without loss of generality
XPath navigation must be expressed in binary style

9 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

Candidate Logics for XML

1 First-Order Logic (FO) and variants (over trees)
X close to LXPath expressive power
× do not fully capture schemas

2 Monadic Second-Order Logic (WS2S)
X extends FO with quantification over sets of nodes
X captures LXPath and finite tree automata
× complexity for satisfiability: hyperexponential
× blow-ups observable for XPath containment

3 Alternation-free fragment of the µ-calculus (AFMC)
X supports schemas and XPath (when extended with converse)
X complexity for satisfiability: 2O(n·log(n)) (with converse)
× the solver a priori explores Kripke structures
× formulas are more general than needed for XML
× low performance in practice (does not scale to large instances)

10 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

Candidate Logics for XML

1 First-Order Logic (FO) and variants (over trees)
X close to LXPath expressive power
× do not fully capture schemas

2 Monadic Second-Order Logic (WS2S)
X extends FO with quantification over sets of nodes
X captures LXPath and finite tree automata
× complexity for satisfiability: hyperexponential
× blow-ups observable for XPath containment

3 Alternation-free fragment of the µ-calculus (AFMC)
X supports schemas and XPath (when extended with converse)
X complexity for satisfiability: 2O(n·log(n)) (with converse)
× the solver a priori explores Kripke structures
× formulas are more general than needed for XML
× low performance in practice (does not scale to large instances)

10 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

XML, Schemas, XPath
Static Analysis
The Logical Approach

Candidate Logics for XML

1 First-Order Logic (FO) and variants (over trees)
X close to LXPath expressive power
× do not fully capture schemas

2 Monadic Second-Order Logic (WS2S)
X extends FO with quantification over sets of nodes
X captures LXPath and finite tree automata
× complexity for satisfiability: hyperexponential
× blow-ups observable for XPath containment

3 Alternation-free fragment of the µ-calculus (AFMC)
X supports schemas and XPath (when extended with converse)
X complexity for satisfiability: 2O(n·log(n)) (with converse)
× the solver a priori explores Kripke structures
× formulas are more general than needed for XML
× low performance in practice (does not scale to large instances)

10 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Contribution Idea
design a specific logic whose models are finite trees

design the algorithm for satisfiability-testing

Remark #1

Finite tree models
avoid exploring useless models
allow a bottom-up algorithm for satisfiability-testing

Remark #2

Only finite recursion is of interest for XPath and Schemas

11 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Contribution Idea
design a specific logic whose models are finite trees

design the algorithm for satisfiability-testing

Remark #1

Finite tree models
avoid exploring useless models
allow a bottom-up algorithm for satisfiability-testing

Remark #2

Only finite recursion is of interest for XPath and Schemas

11 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Formulas of the Lµ Logic

Programs α ∈ {1,2,1,2} for
navigating binary trees (α = α)

1 2

Lµ 3 ϕ,ψ ::= formula
> true

| σ | ¬σ atomic prop (negated)
| γ• | ¬γ• context (negated)
| ϕ ∨ ψ disjunction
| ϕ ∧ ψ conjunction
| 〈α〉ϕ | ¬ 〈α〉> existential (negated)
| X variable
| µX .ϕ unary fixpoint
| µXi .ϕi in ψ n-ary fixpoint

Closed formulas

12 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

µZ .ϕ : finite recursion

{1,2} required for forward axes!

{1,2} required for reverse axes!

Converse programs are crucial

txpath(e, χ) : LXPath × Lµ → Lµ

χ is the latest navigation step
Initially: χ = γ•

13 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

µZ .ϕ : finite recursion

{1,2} required for forward axes!

{1,2} required for reverse axes!

Converse programs are crucial

txpath(e, χ) : LXPath × Lµ → Lµ

χ is the latest navigation step
Initially: χ = γ•

13 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a

a

µZ .ϕ : finite recursion

{1,2} required for forward axes!

{1,2} required for reverse axes!

Converse programs are crucial

txpath(e, χ) : LXPath × Lµ → Lµ

χ is the latest navigation step
Initially: χ = γ•

13 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a

c

a

µZ .ϕ : finite recursion

{1,2} required for forward axes!

{1,2} required for reverse axes!

Converse programs are crucial

txpath(e, χ) : LXPath × Lµ → Lµ

χ is the latest navigation step
Initially: χ = γ•

13 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a

a

c

a

µZ .ϕ : finite recursion

{1,2} required for forward axes!

{1,2} required for reverse axes!

Converse programs are crucial

txpath(e, χ) : LXPath × Lµ → Lµ

χ is the latest navigation step
Initially: χ = γ•

13 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a

b

a

c

a

µZ .ϕ : finite recursion

{1,2} required for forward axes!

{1,2} required for reverse axes!

Converse programs are crucial

txpath(e, χ) : LXPath × Lµ → Lµ

χ is the latest navigation step
Initially: χ = γ•

13 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a ∧
(
µZ .

〈
2
〉
γ• ∨

〈
2
〉

Z
)

γ•

b

a

c

a

µZ .ϕ : finite recursion

{1,2} required for forward axes!

{1,2} required for reverse axes!

Converse programs are crucial

txpath(e, χ) : LXPath × Lµ → Lµ

χ is the latest navigation step
Initially: χ = γ•

13 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a ∧
(
µZ .

〈
2
〉
γ• ∨

〈
2
〉

Z
)/preceding-sibling::b

γ•

b

a

c

a

µZ .ϕ : finite recursion

{1,2} required for forward axes!

{1,2} required for reverse axes!

Converse programs are crucial

txpath(e, χ) : LXPath × Lµ → Lµ

χ is the latest navigation step
Initially: χ = γ•

13 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a ∧
(
µZ .

〈
2
〉
γ• ∨

〈
2
〉

Z
)

a ∧
(
µZ .

〈
2
〉
γ• ∨

〈
2
〉

Z
)/preceding-sibling::b

b ∧ [µY . 〈2〉 () ∨ 〈2〉Y]

γ•

b

a

c

a

b

µZ .ϕ : finite recursion

{1,2} required for forward axes!

{1,2} required for reverse axes!

Converse programs are crucial

txpath(e, χ) : LXPath × Lµ → Lµ

χ is the latest navigation step
Initially: χ = γ•

13 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a ∧
(
µZ .

〈
2
〉
γ• ∨

〈
2
〉

Z
)

a ∧
(
µZ .

〈
2
〉
γ• ∨

〈
2
〉

Z
)/preceding-sibling::b

b ∧ [µY . 〈2〉 () ∨ 〈2〉Y]

γ•

b

a

c

a

b

µZ .ϕ : finite recursion

{1,2} required for forward axes!

{1,2} required for reverse axes!

Converse programs are crucial

txpath(e, χ) : LXPath × Lµ → Lµ

χ is the latest navigation step
Initially: χ = γ•

13 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Semantics of Lµ

The set of models of a formula ϕ is the set of finite binary trees
for which ϕ is satisfied on some node

Translating

in Lµ:

following-sibling::a

a ∧
(
µZ .

〈
2
〉
γ• ∨

〈
2
〉

Z
)

a ∧
(
µZ .

〈
2
〉
γ• ∨

〈
2
〉

Z
)/preceding-sibling::b

b ∧ [µY . 〈2〉 () ∨ 〈2〉Y]

γ•

b

a

c

a

b

µZ .ϕ : finite recursion

{1,2} required for forward axes!

{1,2} required for reverse axes!

Converse programs are crucial

txpath(e, χ) : LXPath × Lµ → Lµ

χ is the latest navigation step
Initially: χ = γ•

13 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

XPath and Closure under Negation of Lµ

A Very Important Property

LXPath translations are never of the form: µX . 〈α〉X ∨ 〈α〉X
LXPath translations are always cycle-free

no occurrence of both a path and its converse between a fixpoint
binder and its variable

Restricting Lµ to cycle-free formulas ensures closure under
negation of recursion

The negation of finite recursion remains finite recursion
¬ϕ is expressible in Lµ for all ϕ ∈ Lµ

Computable using De Morgan’s laws, e.g.
¬ 〈α〉ϕ = ¬ 〈α〉> ∨ 〈α〉 ¬ϕ, and ¬µX .ϕ = µX .¬ϕ

{¬X/X
}

Crucial for implication (e.g., XPath containment)

14 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Translating Schemas into Lµ

Models for Schemas

Schema languages correspond to
subclasses of regular tree types
[Murata et al., 2005]

Regular Tree Types

XML Schema

DTD

Translating Regular Tree Types into Lµ

The binary encoding of trees also applies to tree types

Binary tree type expressions model schemas without loss of
generality
They can be translated into the logic (tschema(·) : Ltype → Lµ)

the n-ary fixpoint binder is used for mutually recursive definitions
only forward programs α ∈ {1, 2} are used

15 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Formulas
XML Embeddings

Formulating Decision Problems to be Solved

txpath(e, χ) : LXPath × Lµ → Lµ and tschema(T) : Ltype → Lµ

Lµ closed under boolean operations

XPath expressions e1, ...,en and schemas T1, ...,Tn

γ• for comparing XPath expresssions from the same context

Many Decision Problems Can be Formulated

XPath emptiness: txpath(e1, γ
• ∧ tschema(T1))

XPath typing: txpath(e1, γ
• ∧ tschema(T1)) ∧ ¬tschema(T2)

if the formula is unsatisfiable then all nodes selected by e1 under
type constraint T1 are included in the type T2

XPath containment:
txpath(e1, γ

• ∧ tschema(T1)) ∧ ¬txpath(e2, γ
• ∧ tschema(T2))

XPath equivalence, XPath overlap

16 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Deciding Lµ Satisfiability

Does a formula ψ ∈ Lµ admit a satisfying finite binary tree?

Principles

Enumerate finite binary trees, look for a node on which ψ holds

The truth status of a formula ψ can be determined from the
status of a few of its subformulas

The Fisher-Ladner Closure cl(ψ) = { subformula of ψ where
fixpoints are unwounded once }
We focus on a subset Lean(ψ) ⊆ cl(ψ):

atomic propositions (alphabet symbols in ψ)
existential formulas

17 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

Emptiness of XPath expression: self ::b/parent ::a

ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X

exp(ϕ) = b ∨ 〈2〉ϕ

Lean(ψ) =



〈1〉>,〈
1
〉
>,

〈2〉>,〈
2
〉
>,

σ,
a,
b,
〈1〉ϕ,
〈2〉ϕ


The atomic proposition “σ” simulates an infinite alphabet
(σ ≡ ¬a ∧ ¬b)

18 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Nodes of the Searched Binary Tree

The satisfiability-testing algorithm attempts to build a satisfying
finite binary tree such that some node satisfies ψ

A node is a ψ-type: a set t ⊆ Lean(ψ) which satisfies constraints,
e.g.:

modal consistency: ∀ 〈α〉ϕ ∈ Lean(ψ), 〈α〉ϕ ∈ t ⇒ 〈α〉> ∈ t

tree node:
〈

1
〉
> /∈ t ∨

〈
2
〉
> /∈ t

labeled with exactly one atomic proposition σ ∈ t

a ψ-type valuates any formula in cl(ψ) via a relation
.
∈

for instance ϕ1 ∧ ϕ2
.
∈ t iff ϕ1

.
∈ t and ϕ2

.
∈ t

19 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Satisfiability-Testing Algorithm: Principles

Bottom-up Construction of a Tree of ψ-types

A set T of ψ-types is repeatedly updated (least fixpoint
computation)

Initially: ∅
Step 1 : all possible leaves are added
Step i : all possible parent nodes of current nodes are added

Termination

If ψ is present in some root node, then ψ is satisfiable

The algorithm returns a satisfying model as soon as it is found
Otherwise, it terminates when no more node can be added

all roots of all buidable finite trees have been added

20 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 =?

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

T 2 =?

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

T 2 =?

Does belong to T 2 ?b 〈2〉ϕ

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

T 2 =?

Does belong to T 2 ?b 〈2〉ϕ〈2〉ϕ

σ

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

T 2 =?

Does belong to T 2 ?b 〈2〉ϕ〈2〉ϕ

a

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

T 2 =?

Does belong to T 2 ?b 〈2〉ϕ

b

Yes!

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

T 2 =?
Does b satisfy ψ ?

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

T 2 =?
Does b satisfy ψ ? No!b

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

T 2 =?

Does belong to T 2 ?a 〈1〉ϕ

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

T 2 =?

Does belong to T 2 ?a 〈1〉ϕ〈1〉ϕ

σ

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

T 2 =?

Does belong to T 2 ?a 〈1〉ϕ〈1〉ϕ

a

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

T 2 =?

Does belong to T 2 ?a 〈1〉ϕ

b

Yes!

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

T 2 =?
Does a satisfy

ψ?

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

T 2 =?
Does a satisfy

ψ?
a

Yes!

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

∣∣T 2
∣∣ = 81

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

∣∣T 2
∣∣ = 81
→ return satisfiable!

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

∣∣T 2
∣∣ = 81

T 3 = ...

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Example

T 0 = ∅T 0 = ∅

T 1 = { σ σ σ a a a b b b }

∣∣T 2
∣∣ = 81

T 3 = ...

T n = T n−1 (fixpoint)

Lean(ψ) =
{
〈1〉>,

〈
1
〉
>, 〈2〉>,

〈
2
〉
>, σ, a, b, 〈1〉ϕ, 〈2〉ϕ

}
ψ = a ∧ 〈1〉ϕ with ϕ = µX .b ∨ 〈2〉X ≡ exp(ϕ) = b ∨ 〈2〉ϕ

Emptiness check of XPath expression self ::b/parent ::a

21 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Correctness & Complexity

Theorem

The satisfiability problem for a formula ψ ∈ Lµ is decidable in time
2O(n) where n = |Lean(ψ)|.

Theorem

For e ∈ LXPath and a regular tree type expression T , the translations
of e and T in Lµ are linear in the size of e and T .

Corollary

XPath decision problems (e.g., typing, containment, emptiness,
equivalence) in presence of schemas can be decided in time
complexity 2O(n).

22 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Correctness & Complexity

Theorem

The satisfiability problem for a formula ψ ∈ Lµ is decidable in time
2O(n) where n = |Lean(ψ)|.

Theorem

For e ∈ LXPath and a regular tree type expression T , the translations
of e and T in Lµ are linear in the size of e and T .

Corollary

XPath decision problems (e.g., typing, containment, emptiness,
equivalence) in presence of schemas can be decided in time
complexity 2O(n).

22 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Solver Implementation Techniques

Idea: Implicit Representation

The T is can be represented by boolean expressions

Set-theoretic operations: composition of boolean expressions

A set of ψ-types is encoded by a Binary Decision Diagram (BDD)
[Bryant, 1986]

Critical Optimizations

Conjunctive partitioning and early quantification (aims at
composing smaller BDDs)

Good initial order of BDD variables

23 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Principles
Implementation Techniques

Implementation

System fully implemented (Java + Buddy C BDD library)

Implementation available: http://wam.inrialpes.fr/xml/

Some Examples and Demo

DTD of the W3C SMIL 1.0 recommendation
Question Answer Time (ms)

/descendant ::video ⊆ /descendant ::video[parent::seq] ? no 125
/descendant ::audio[preceding-sibling ::video] 6= ∅? yes 109

child::switch[ancestor::head] ⊆ descendant ::switch ? yes 105

Demo

24 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Summary of Contributions
Perspectives

Main Contributions

A tree logic offering an interesting balance

expressiveness: regular tree types + multi-directional navigation
+ finite recursion

complexity for satisfiability: 2O(n) where n = |Lean(ψ)|
Compilation of main XML concepts: linear

extensibility warranted (sublogic of the AFMC with converse)

A system for solving basic decision problems involving XPath queries
and schemas

The largest XPath fragment effectively treated so far for static
analysis

The system benefits from the boolean closure of the logic

Efficient implementation in practice

25 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Summary of Contributions
Perspectives

Future Work

Extending the Tree Logic

Decidable counting constraints

Decidable data-value comparisons

Applications

Static type-checking of XSLT, XQuery

Optimization

XML Security

Checking integrity constaints in XML databases

Query comparison in P2P networks

26 / 27

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Summary of Contributions
Perspectives

Thank you!

http://wam.inrialpes.fr/xml/

27 / 27

http://wam.inrialpes.fr/xml/

Introduction
A logic for finite trees

Satisfiability-Testing Algorithm
Conclusion

Summary of Contributions
Perspectives

Bryant, R. E. (1986).
Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691.

Murata, M., Lee, D., Mani, M., and Kawaguchi, K. (2005).
Taxonomy of XML schema languages using formal language
theory.
ACM Transactions on Internet Technology, 5(4):660–704.

27 / 27

	Introduction
	XML, Schemas, XPath
	Static Analysis
	The Logical Approach

	A logic for finite trees
	Formulas
	XML Embeddings

	Satisfiability-Testing Algorithm
	Principles
	Implementation Techniques

	Conclusion
	Summary of Contributions
	Perspectives

