A Compiler-Based Approach to Schema-Specific XML Parsing

Kenneth Chiu and Wei Lu

Indiana University
{chiuk,welu} @cs.indiana.edu

Abstract

The validation of XML instances against a schema is usually per-
formed separately from the parsing of the more basic syntactic
aspects of XML. We posit, however, that schema information can
be used during parsing to improve performance, using what we call
schema-specific parsing. This paper develops a framework for
schema-specific parsing centered on an intermediate representation
we call generalized automata, which abstracts the computational
steps necessary to validate against a schema. The generalized
automata can then be used to generate optimized code which might
be onerous to write manually. We present results that suggest this is
a viable approach to high-performance XML parsing.

1 Introduction

XML is a text-based, human-readable format for structured
information. Spurred by the ubiquity of its cousin HTML, it
has become the de facto standard for interoperable data rep-
resentation. XML is also the natural choice as a transfer syn-
tax for Web services-based middleware, further increasing
its prevalence.

Some of the features responsible for XML’s popularity,
however, also affect parsing. This has led to concerns about
its performance, especially for middleware. One promising
technique is creating parsers specific to a schema [2][5][7],
which we call schema-specific parsing.

This paper contributes a compiler-based approach for
schema-specific parsing that we believe provides a flexible
framework for implementing high-performance, schema-
specific parsers. Our framework is centered around an inter-
mediate representation called the generalized automaton
(GA). Our intermediate representation serves a purpose sim-
ilar to that of an intermediate language in a programming
language compiler.

First we briefly review XML Schema in Section 2. Then
in Section 3, we describe our approach in detail, including
schema-specific parsing and generalized automata. Section 4
outlines the processing that occurs for code generation. Per-
formance results are presented in Section 5. In Section 6 we
review related work. We conclude in Section 7 with a con-
clusion and future work.

2 XML Schema

XML documents are general, and can be arbitrarily struc-
tured. Many production programs, however, can only sensi-
bly accept of a small subset of possible XML documents.

Thus, some way to describe the set of acceptable XML docu-
ments facilitates the development and maintenance of XML-
based systems. These descriptions are generically known as
schemas. An XML document that belongs in the set
described by the schema is known as an instance of the
schema.

An XML schema is simply a pattern, or template, for
XML documents. There are number of standards for XML
schema, including DTD, and RELAX NG [3], but we have

initially chosen to focus on XML Schema! [12]. A full
description of XML Schema is beyond the scope of this
paper, but we briefly mention a few concepts that are used
later.

2.1 Types

Each element declaration in a Schema associates a name to a
type. The name declares the name of the element, while the
type specifies the contents of the element. Thus, the name is
distinct from the type, which allows a type to be referenced
in multiple element declarations.

2.2 Recursive Schema

A schema can contain types that are self-referential. The cor-
responding instance may be nested to any given depth. For
example, the following Schema fragment defines a recursive
type named recursive, and one element named nested
of type recursive.

<complexType name="recursive'>
<choice>
<element name="base" type="string">
<element name="nested" type="recursive's
</choice>
</complexType>
<element name="nested">

The <choices> element specifies that valid content is either
of the two contained elements. The <base> element is the
base case of the recursion, and terminates the nesting. The

"n this document, we will use “Schema” to refer to schema as
defined by the XML Schema specification, and “schema” to refer
generically to any XML schema.

<nested> element is recursive. The following is a valid
instance of the schema.

<nested>
<nested>
<base>A string</base>
</nested>
</nested>

2.3 Occurrence Constraints

A type can constrain the number of times a contained ele-
ment can occur. These are known as occurrence constraints.
For example, the following Schema fragment indicates that
the <item> element may appear between 2 to 5 times within
the My Type type.

<complexType name="MyType” >
<sequences>
<element name="item” type="string”
minOccurs="2" maxOccurs="5"/>
</sequence>
</complexType>

3 Schema-Specific Parsing

The processing of XML in an application can be divided into
three stages.

1. Well-formedness. The first stage is syntactic, and
addresses whether or not the document is well-formed
XML.

2. Validity. The second stage addresses whether or not the
structure is a valid instance of a given schema.

3. Application. In the third stage, the application actually
uses the data in the XML.

These three stages are conceptual, and can be implemented
in various ways. If the stages are fully articulated, a general
XML parser parses the XML into some kind of data structure
representation of the XML. A validation pass is then made
over the XML. The XML data structures are then presented
to the application. Often, the first two stages are packaged
together into what is known as a validating parser.

A common perception among practitioners is that XML
parsing is slow, and that XML validation is even slower.
Thus, some applications do not implement the complete
three-stage division. Instead, a general XML parser passes
unvalidated XML to the application, which then implicitly
validates it by error checking and possibly exception han-
dling. Essentially, the second and third stages have been
merged into one, as shown in Figure 1.

We posit, however, that XML schemas contain informa-
tion that may actually speed-up the lexical analysis and pars-
ing of XML documents, if exploited correctly. We thus
believe that instead of merging the second and third stages,

w
w
w

Application Application Application

N
N

2 Validity Validity Validity

-

Well-formedness Well-formedness Well-formedness

Fully Articulated

-
-

Schema-Specific
Parsing

Implicit Validation

[]= Userwritten

Figure 1. In a fully articulated implementation, each stage is distinct. Some
applications forgo a validating parser, and instead implicitly validate the
XML during use, thereby essentially merging layers 2 and 3. Schema-spe-
cific parsers, on the other hand, merge layers 1 and 2. This merging of layers
1 and 2 is normally not practical, because the resulting code would be com-
plex, difficult to maintain, especially when the schema changes. (The gray
stages are user written.)

as is commonly done, we should instead merge the first and
second stages. The merged parser is what we call a schema-
specific parser.

For example, without schema information element
names must be buffered by the lexical analyzer for use by the
application or during validation. If schema information is
available, element names can be directly resolved to an
application-provided, element-specific handler during lexi-
cal analysis.

3.1 Schema Compilation

Merging the first and second stages reduces abstraction and
encapsulation costs, but the resulting code is complex, and
therefore difficult to develop and maintain. Since the first
and second stages require no application-specific processing,
however, we can generate the code by schema compilation.
Schema compilers treat the schema as source code, and
compile it into a target language. The output may then be

interpreted by a validation engine, or executed externally.!
The resulting parser only accepts XML documents which are
valid instances of the source schema. All other XML docu-
ments are rejected.

In our approach we output executable code that simulta-
neously parses and validates the XML. The simultaneous
parsing and validation merges the lexical, syntactic, and
schema aspects of XML processing into a single code layer,
which tends to improve locality and CPU register utilization.
This code is then executed directly, rather than interpreted by
a processing engine or execution kernel. Analogous to the
expected speed-up of compiled object code over interpreted
byte code, we also expect a directly executed schema to be
faster than an interpreted schema. In [7], Lowe, Noga, and
Gaul provide further evidence for this performance gain.

Rather than directly generating the parser code from the
schema, we adopt an approach similar to that of traditional
compilers. A front-end first parses the schema into an inter-
mediate representation, analogous to an intermediate lan-

1A target language such as Java may in fact be interpreted, but such
interpretation would be external and hidden to the XML processing.

Front-Ends Back-Ends
Schema Schema G+ Code
RELAX A Java
NG 4 Code
Schema

Figure 2. Our architecture divides the compilation process into a front-end
and back-end, with an intermediate representation used in between. This
allows different front-ends to work with different back-ends. Round shapes
represent processes, while rectangular shapes represent data.

guage in programming language compilers, and a back-end
then generates code from this intermediate form. This sim-
plifies the design, and produces opportunities for optimizing
transformations to be performed on the intermediate form.

This also supports the development of different back-
ends for different target languages and purposes. For exam-
ple, one back-end could generate Java byte code, while
another could generate C++. Furthermore, even within the
same target language, different back-ends can generate dif-
ferent kinds of code. For example, one C language back-end
might generate a parser optimized for speed, while another
might generate code optimized for power-efficiency on a
mobile device. Even with the same target language, an opti-
mization on one hardware architecture may be a pessimiza-
tion on a different one, suggesting that different code be
generated for each architecture.

Similarly to how different compiler front-ends can gener-
ate the same intermediate language from different source
languages (like the architecture for GCC), we can also
develop front-ends for different schema languages, as shown
in Figure 2. Our current work focuses on the XML Schema
language.

Our approach may be too onerous in situations where the
schema change frequently. An interpreted approach as in
[14] may be more appropriate in such scenarios.

3.2 Generalized Automata

Many choices are available for the intermediate representa-
tion of the schema. The issues are similar to that of choosing
an intermediate language for a compiler. One that is too
high-level might not expose enough low-level details to sup-
port various kinds of useful manipulations and transforma-
tions. On the other hand, one that is too low-level discards
structural information that might be useful for other kinds of
optimizations.

One choice for an intermediate representation is finite
automata (FA) [13][14]. Though suitable when used as a
higher-level abstraction for schema validation, they are less
useful for code generation. Finite automata would allow
some kinds of optimizations to be performed. However, FAs
do not have sufficient power to validate some aspects of
XML schemas, such as occurrence constraints. Thus, various

Figure 3. A generalized automata (GA) has a predicate T and list of actions
A with every transition. If the predicate is true, the transition is enabled and
may be taken. If taken, the actions must be executed. Each predicate has a
readset which indicates on which variables it depends. Each action has a
writeset, which specifies which variables it modifies.

kinds of ad hoc extensions would be required. These exten-
sions would complicate transformations on the intermediate
representation, because the FAs would no longer closely
model the generated code. Transformations valid for the FAs
would not necessarily result in correct code. This would
reduce the benefits of a formal model.

Another choice for an intermediate representation is
high-level constructs like tree grammars [4][8][9]. Tree
grammars, though, do not adequately represent the low-level
aspects of parsing, such as lexical analysis. Thus, they hinder
the ability to merge well-formedness checking, which is
highly lexical, with validation, which is primarily structural.
Tree grammars also may have some difficulty scaling to
arbitrary occurrence constraints, and handling aspects such
as namespaces. Tree grammars are powerful models for rea-
soning about schemas, but perhaps less appropriate for code
generation.

Yet another choice is context-free grammars [5][7]. We
believe the issues with context-free grammars are similar to
those for tree grammars.

We thus believe a different intermediate representation
simplifies the overall architecture, both in concept and
implementation, and choose as our intermediate representa-
tion a generalization of pushdown automata (PDAs) we call

generalized automata (GA)l. Rather than just a stack, a GA
has a finite set of variables. Each variable can hold arbitrary
values (without bound). Each transition has a predicate over
the variable set, rather than just an input symbol and a stack
symbol. Each transition also has an ordered list of actions. A
transition can be taken if the predicate is true for the current
variable values, and when taken, the actions are executed. A
fragment of a GA is shown in Figure 3.

Each predicate reads from a set of zero or more variables,
which is termed the readset. Each action writes to a set of
zero or more variables, which is termed the writeset. Actions
also have readsets, though we currently assume than an
action’s readset is equivalent to its writeset. Actions may be
compared for equivalence; predicates may also be compared
for equivalence.

GAs encompass FAs. An FA is a GA with one variable,
the input buffer. A FA transition labelled with an input sym-

'We are aware that the term generalized automata is already being
used for something else, but have yet to think of a better term.

bol a is equivalent to a GA transition with one predicate
which returns true if the current input symbol equals a. The
GA version of an FA transition has one action which con-
sumes the next input symbol. An epsilon transition corre-
sponds to a GA transition with a predicate that is always
true, and no actions.

Similarly, PDAs can be mapped to GAs. A PDA is a GA
with two variables, the input buffer and the stack. The stack
can be treated as a single variable, because we do not place
any restrictions on the contents of a variable. The transition
function for PDAs can be represented by an appropriate
predicate.

Note that GAs do not provide a complete computational
model. Any arbitrary computation may occur in the actions,
and variables are not restricted. This is a deliberate omission,
because our goal here is not a representation for reasoning
about the schema itself, but rather a representation for rea-
soning about the computational steps required to validate a
schema. We desire a model about computation, not a model
for computation; we want to manipulate computation, not
actually compute.

Thus, we only model the aspects of computation that we
believe affect code generation. So we permit actions, predi-
cates, and variables to be defined arbitrarily and external to
the model, but include in the model the equivalence relations
and ordering dependencies that we believe are significant to
the generation of efficient code. Each back-end provides a
specific set of actions, predicates, and variables that together
define an abstract processor. This processor functions as a
CPU specialized for parsing and validating XML.

Seen thusly, GAs extend FAs with information that con-
strains valid transforms, so that transforms valid on the GA
will still result in valid code. Similarly, tree grammars have
no mechanism for any reasoning about computation that
takes place in extensions that are outside of the tree grammar
model. GAs essentially abstract arbitrary computation as
actions, while maintaining information useful for reasoning
about code generation.

Formally, a GA is defined by the eight-tuple

M = (Qa U7 89 HaAa CI(y &07 F) (1)

where Q is a set of states, U is a set of variables, & is a
transition function, IT is a set of predicates over U, 4 is a set

of actions over U, g, is the start state, §, is the initial con-

figuration, and F is a set of final states.
A configuration represents the values of all the variables,
and is an element from the set V; x ... X V, , where V' is the

set of values that can be stored in variable u;. The set of all

configurations is known as the configuration space. Actions
can be viewed as mappings from one configuration to
another.

Name Applied To Definition
actions transition ¢ action list of ¢
transition ¢ predicate of ¢
red red(t
P transition set 7’ uP @
te T
action a set of variables read by a
L readset(a
action list 4 o @
ae A
predicate T set of variables read by ©
readset
state g readset(trans(q))
transition ¢ readset(pred(?))
.. readset(?
transition set T o ®
te T
transition ¢ source vertex (state) of
source source(?
transition set 7’ o @
te T
transition ¢ target vertex (state) of ¢
target target(s
& transition set 7’ L farg @
teT
state g {t:(q = source(?)) }
trans trans(q)
state set Q o
g€ Q
action a set of variables written by a
L writeset(a
writeset action list 4 % @
ac A
transition ¢ writeset(action(?))

Table 1. Notation used to access various parts of a GA.
3.2.1 Transition Function

The transition function maps from the state and a configura-
tion to a finite set of pairs. Each pair is a new state, and a list
of actions. The mapping is to a set, rather than a single pair
to accommodate nondeterminism.

8(q7 a)%{(qlaAl)v (q27A2)7 } (2)

Here, g is the current state. 4, and 4, are lists (ordered

sets) of actions.

Since the number of configurations is possibly infinite,
the transition function is not defined by enumeration. Rather,
we use an equivalent graph-based formulation similar to that
used for FAs. Each edge in the graph is represented by a

four-tuple (g, p, w, A), where ¢ is the source vertex, p is the

target vertex, T is a predicate, and A4 is a list of actions, as
shown in Figure 3. We call such an edge a transition, and say
that it is enabled when 7 is true for the current configura-
tion. Note that GA transitions are slightly different from
transitions in FAs and PDAs. A single GA transition might
be enabled for many different input symbols, which is not
the case for FAs and PDAs.

The GA may take any enabled transition nondeterminis-
tically. Upon taking a transition, it must execute the list of
actions (in order) associated with that transition.

Figure 4. The writeset of the 1-2 transition in (a) does not intersect with the
readset of state 2, so the transitions can be compressed, as shown in (b). The
resulting transitions are guaranteed to result in an equivalent machine. In
(c), the transitions cannot be compressed, because the transition from 2-4
depends on the value of u#, . Note that even the path 1-2-3 cannot be com-
pressed, even though the predicate of 2-3 does not depend on Uy, because
resulting machine would not be equivalent.

When the source vertex is clear from context, we say that
a state ¢ is enabled when the transition from the source ver-
tex to ¢ is enabled. When the context is clear, we will also
refer to the predicate of a state as shorthand for the predicate
of the transition to that state.

Table 1 explains the notation used to access various parts
of GAs.

3.2.2 Instantaneous Description

Note that in the GA model, the state of the computation, in
the English language sense, is not just the formal state of the
machine as defined above. The state of the computation
includes the current configuration. The same is also true for
FAs, in the sense that the state of the computation also
depends on the contents of the input buffer at that instant,
and not just the formal state.

Thus, the instantaneous description represents the com-
plete state of the machine at any one moment. It is a snapshot
of the running machine.

(¢, %) 3)

where ¢ is the current formal state, & is the current configu-

ration. Upon taking a transition, the machine updates the
instantaneous description by executing the actions.

3.3 Nondeterministic GA (NGA) to Determinis-
tic GA (DGA) Conversion

The GA generated by the front-end is non-deterministic.
This simplifies the front-end, and any transformations such

Figure 5. As shown in (a), If % is in the range (2, 5), then both state 2 and
state 3 are enabled when in state 1. The machine must thus be in both states
until further computation can discriminate the two paths. We thus merge
states 2 and 3, as shown in (b). Note that the predicates on transitions
1 -2 and 1 — 3 must also be modified.

as might be performed by optimization algorithms. Code
generated from a non-deterministic GA would have to simu-
late the non-determinism, however, which is inefficient.
Thus, we convert the NGA to a DGA before code genera-
tion. Of course, not all NGAs are convertible to DGAs; since
we know that not all non-deterministic PDAs can be con-
verted to deterministic PDAs, and PDAs can be represented
as GAs. In practice, however, we have not found this to be a
problem, and, since we control the front-end, we can tweak
the output of the front-end if it ever does pose an issue.

The algorithm is based on the subset construction algo-
rithm used to convert NFAs to DFAs. The first pass is analo-
gous to epsilon-closure, and is called move compression.
The second pass constructs the actual subsets. The imple-
mentation queries the back-end for the actual read- and wri-
tesets. This allows a single implementation of various GA
algorithms to work with multiple backends.

3.3.1 Move Compression

The basic idea in subset construction for NFAs is that the
constructed DFA has states that represent multiple NFA
states. This allows the DFA to simultaneously follow multi-
ple paths in the NFA. Paths are abandoned when subsequent
input discriminates those paths as dead ends.

With FAs, this construction is relatively straightforward,
because there is only one action, which is to consume an
input symbol. With generalized automata, however, two
transitions enabled by a configuration may have different
actions, and the different actions change the configuration in
different ways. This means that two transitions cannot be
merged if the actions are different, since we cannot simulta-
neously maintain multiple configurations within the GA
model.

To reduce the number of such conflicts, we first make a
move compression pass. This pass compresses transition

paths, so that two transitions that previously had different
actions may now have the same action. The purpose of this is
to remove transitions that are redundant, and to move predi-
cates as early as possible in an execution sequence.

The main idea behind move compression is that a
sequence of transitions can be combined into one transition
if the actions of the first transition do not interfere with the
predicate of the second. After move compression, the invari-
ant is that writeset(f) must intersect with readset(target(z)).
Move compression is shown in Figure 4.

Let fodo be a stack of states representing work to do.
Push the start state on to todo.
While there is a state p left in todo:

Pop todo.

Mark p.

For each transition ¢ out of p:

If the writeset(f) does not intersect with
readset(target(?)), then:

For each transition s out of target():

Insert a new transition from p to target(s) with
predicate of pred(7)"pred(s) and actions
action(?) concatenated with action(s).

Remove ¢

If ¢ was removed, then push p back on to fodo; else push all
unmarked targets of p on to fodo.

Also note that a transition path with a loop in the first transi-
tion should be skipped.

Our current move compression algorithm does not per-
form all valid compressions. So far we have not found that to
be a problem, but will incorporate further compressions as
necessary.

3.3.2 Subset Construction

After the move compression pass, we next perform subset
construction similarly to the NFA subset construction algo-
rithm. In this algorithm, all transitions that are enabled for
the same input symbol are grouped together into a subset.
Because the input alphabet is relatively small, these subsets
can be easily determined by enumeration or sorting. For
GAs, however, the configuration space is much larger, and is
in fact infinite.

We therefore generalize the NFA subsets by defining an
equi-enabled set of a state p to be a set of transitions out of p
such that there is at least one configuration where all transi-
tions in the set are enabled and all not in the set are disabled.
We define the superset of a state p to be the set of all equi-
enabled sets. (A more detailed treatment can be found in the
Appendix.) The subset construction algorithm for GAs is
then

Let dstates be a set of states to containing the states of the
newly created DGA.

Insert the start state into dstates.

While there is an unmarked state p in dstates:
Mark p.
For each equi-enabled set S in the superset of p:

Lookup state g representing target(S) in dstates; if not
found, create a new unmarked state g for target(S) in
dstates. For the new state ¢,

trans(q) = trans(target(S)).

Add a transition 7 from p to g. Let e; be the AND of all
predicates in pred(S), and e, be the OR of all predi-
cates in pred(u), whereu € trans(p) — S. Then set
pred(?) to e; A —e, .

This algorithm requires that all outgoing transitions in the
same subset have the same list of actions. So far, we have not
found that to be a limitation, but we will develop more
sophisticated algorithms if necessary. For example, a list of
actions can be split between two transitions if there is no
readset interference.

Generating the supersets is difficult in general. We cur-
rently generate these in a case-by-case fashion, but we out-
line how we might generate supersets in more general cases
in the Appendix.

3.4 Schema Predicates and Actions

The GA model does not define the actual predicates and
actions, but rather only that they have readsets and writesets,
respectively. For our initial focus, we chose predicates and
actions appropriate for XML Schema, some of which are
listed in Table 2. These predicates are recognized by the

Name Purpose
match a True if the next input symbol is a.
Ei True if the call site was s. This is used to
.§ call_site s match the return transition to the return
E address.
R Used for controlling the matching under
QCCUITENCE | ccurrence constraints.
consume Consume a symbol from the input buffer.
call Push a context on the stack.
return Pop a context.
attr_start Beginning of an attribute.
attr_char An attribute character.
é attr_end End of attribute.
:: value start | Beginning of the attribute value.
value char | An attribute value character.
value end End of attribute value.
pref start Beginning of namespace prefix.
pref char Namespace prefix character.
pref end End of namespace prefix.

Table 2. Predicates and actions used for generating parsers for XML
Schema.

ws
< e S
O O O—X £ attributes
(a) >

Figure 6. The GA fragment for a start tag is shown in (a). The notation ws
represents a set of transitions for the various whitespace characters. The
attributes machine represents a set of states for parsing the attributes. In
(b), we see how a single type content machine serves multiple elements.
Each call transition modifies the configuration in such a way that the cor-
rect return transition is enabled. The exact details of this modification are
determined by each back-end. Note that the type content machine can be
mapped naturally to a function in the target language. In this case the
return transition would simply be the usual return statement in the pro-
gramming language.

back-end code generators which can then generate the cor-
rect code to implement the semantics of the Schema
instance. Taken together, these predicates and actions essen-
tially serve as the instruction set of an abstract Schema vali-
dation processor.

Types are handled specially by the front-end. The front-
end generates one group of states for each Schema type T.
When an element is defined of type 7, a call action to the
start of T is created, and a return action from the end of T
back to the element’s end tag is also inserted. The return
transition has a predicate that is only enabled when call site
corresponds to the return state (Figure 6).

This supports recursive Schemas, and also eliminates the
combinatorial state explosion caused by nesting of types.

Note that the valid attributes of an element are part of the
type, but are parsed in the start tag machine, not the shared
content type machine. This is because the namespace is not
known until the end of the start tag is seen, so the correct
content type is not know until the end of the start tag.

We have defined our predicates and actions for the XML
Schema, but we believe that other schema languages can be
accommodated with modest changes. The goal is that one set
of predicates and actions can be used with a variety of front-
ends. A single back-end can then generate parsers for a num-
ber of schema languages.

LABEL FOR STATEl:

if (c == 'a’) {
ald, @ // Do actions A2.
goto LABEL FOR STATE2;
if (¢ == 'b") {

// Do actions A3.
blAs goto LABEL FOR STATE3;
® }
goto ERROR1;

Figure 7. The GA fragment on the left is translated to the code on the right.
State is maintained implicitly with the program counter (location in code)
rather than an explicit state variable. We also encourage the compiler to use
immediate operands in the instruction stream.

4 Code Generation

The GA may undergo a number of optimizations. For exam-
ple, isomorphic sub-graphs may be identified. These sub-
graphs could be replaced with a single set of states, thus
reducing the code size. If necessary, additional Schema pred-
icates and actions may be defined to assisted these optimiza-
tions. We note that after NGA to DGA conversion, the
machine resembles a predictive parser, but with transitions
that can depend on arbitrary predicates, rather than just the
next input symbol.

The back-end traverses the GA and generates code. For
each predicate and action, it outputs code it deems necessary
for validation. Each back-end will translate the predicates
and actions differently. Our prototype back-end is a C++
generator designed for speed. We map groups of states which
parse types to C++ functions, which will allow us to use the
program stack for many of the more expensive actions, thus
improving performance and handling recursive schema in a
natural, efficient way. For example, counters for occurrence
constraints could simply be automatic variables.

We also do not use an explicit state variable to encode the
GA state. Rather, we use the program counter to maintain
state, and encourage the compiler to include data in the
instruction stream as immediate operands, as shown in
Figure 7. These techniques tend to improve memory access
behavior. Note that a table-driven approach would prevent
the ‘a’ character from being included as an immediate oper-
and.

5 Performance Results

Our prototype implementation currently only accepts only a
small subset of XML Schema: string attributes, choice,
sequence, complex types. We also accept a single maximum
occurrence constraint within a sequence. We do not currently
accept namespaces.

We compared our implementation to Libxml2 2.6.7,
expat 1.2, and gSOAP 2.5. Due to the highly varied nature of
these parsers, these tests are not meant to show that any

parser is necessarily faster than any other, but rather to pro-
vide feedback on the potential of our approach.

Libxml was configured with no extra options. The vali-
dation was performed through the Reader interface. The
main loop simply called xmlTextReaderRead () repeat-
edly after enabling validation. The expat parser was com-
piled without namespace and DTD support. The program did
not examine any of the parsed information. gSOAP was con-
figured with no special options. All code was compiled with
the Sun Workshop C and C++ compilers version 5.3 and the
-O option.

The Schema we used is given below (slightly edited for
clarity).

<schema>
<complexType name="elemType">
<choice>
<element name="subl" type="string"/>
<element name="sub2" type="string"/>
</choice>
</complexType>
<complexType name="topType">
<sequence>
<element name="elem" type="elemType"
maxOccurs="N"/>
</sequence>
<attribute name="attr" type="string"/>
</complexType>
</schema>

This schema describes sequence of <elem> elements, of N
maximum occurrences. Each <elems> eclement has one
attribute and two possible subelements. One choice is a
<subl> subelement and the other is a <sub2> subelement.
Both possible subelements contain a string. Since Libxml2
does not accept XML Schema, the following DTD was used:

<!DOCTYPE top [
<!ELEMENT top (elem+)>
<!ELEMENT elem (subl|sub2)>
<!ELEMENT subl (#PCDATA) >
<!ELEMENT sub2 (#PCDATA) >
<!ATTLIST elem attr CDATA "default"s>
1>

For gSOAP we used wsd12h to generate an C++ header file
from the Schema and then generated the stubs and skeletons
from the header file with scapcpp2.

The code generator is a straightforward translation of the
GA. Each vertex is represented by a block of code. Each
transition consists of one if statement, followed by the
actions within the body of the if statement. If the vertex only
has one transition, we reverse the sense of the if statement so
that the valid case simply falls through. The occurrence con-

straint is validated via a local integer counter variable. The
commented sample below illustrates the generated code.

// If an e, it is the beginning of "elem".
if (c == 'e") {

consume_input () ;

goto label34;

// If slash, it is the end of elemType type.

if (c=="'/") {
consume_input () ;
return;

// If whitespace character, it is beginning of
// optional whitespace.
if (c==""] c=="\r' || ¢ =="\n'
e = e |
consume _input () ;
goto label29;

}

goto error3;

We can see above one way in which schema-specific parsing
facilitates exploitation of the schema. Since we know the tag
names, we simply insert the expected characters directly into
the conditionals. Without schema information, the element
name would have to be stored to memory for subsequent
access, thus increasing memory accesses.

We have not settled on a complete user API, but used a
SAX-like API with handlers specific to the elements. That is,
each element has a different handler, so the application will
not need to reexamine the tag name to know which element
has been encountered. In this case, calls to non-leaf handlers
had no arguments, while the call to the leaf handlers were
passed the contents of the element as C strings.

The documents were read from a file located on a tmpfs
filesystem, so the tests include system calls for I/O. Time
was measured with the gethrtime () call. We attempted to
avoid including various initialization in the measured time,
but cannot guarantee that there was no hidden initialization
that was inadvertently included. The parsed XML was not
further processed in any way.

The tests were run on a Sun Fire 280R Model 21200 with
two UltraSPARC-III+ 1200 MHz CPUs and 4 GB of main
memory, and the results are shown in Figure 8 as a log-log
graph.

The results show that our approach can be significantly
faster than other parsers, both validating and non-validating.
Libxml is of course a comprehensive, production-quality
parser, so includes much more functionality. We also note
that the Libxml Reader API is easier to use than the SAX-
like API of our implementation, and likely trades some per-
formance for ease-of-use. gSOAP also incurs the overhead
of C++ strings, which can be slow but are more convenient
and robust than simply passing a C string to the application.
The performance difference between expat and SSP is at
least partially due to the additional writes that expat uses to

10

10
—%— SSP
s +- Libxml2 ¥
10 gSOAP o 1
8- expat & -

Time (microseconds)
=
(=]
>

10 10° 10
Number of elements

10

Figure 8. We show here the time to parse a document of a given size in log
scale on both axes. The x-axis shows the number of elements in the docu-
ment. The y-axis is total time for the document in microseconds. Note that
the times for 1 element likely includes a costly read () system call, which
tends to obscure the differences between parsers. For 100,000 elements and
over, the difference between expat and SSP was about 7 times. The test was
run on a UltraSPARC III+ 1200 MHz CPU.

store the tag name for access by the application during the
callback.

Despite these differences that prevent a direct compari-
sion, we nonetheless believe that we have a flexible, viable
approach to building high-performance XML parsers. Future
work will explore the limits of our approach.

6 Related Work

A number of previous researchers have investigated schema-
specific parsing and related techniques.

In our previous work [2], we conducted a preliminary
investigation into using SSP for SOAP arrays, and found that
performance could in fact be improved.

Thompson and Tobin [13] augmented finite state autom-
ata to validate Schema content models. The resulting FSAs,
however, may be very large for some occurrence constraints.

Wang et al. [14] compile the schema into a compact form
known as Annotated Automata Encoding. This is then inter-
preted by a kind of FSA. The advantage of this method is
that they do not need to recompile any source code when the
schema changes. Performance may not be as good as with
direct execution, however.

Lee, Mani, and Murata [6] investigate the use of regular
tree grammars to analyze schemas and validate instances.
They focus on the structure of the elements.

In [11], Reuter and Luttenberger develop cardinality con-
straint automata, which handle occurrence constraints and
<all> more efficiently than tree automata. Lexical analysis
is still performed separately, however.

In [7], Léwe, Noga, and Gaul investigated the generation
of deterministic context-free grammars for DTDs and
restricted Schemas. With their aXMLerate toolkit, they
found the resulting performance to be quite good, and con-
firm that schema-specific parsers can actually be faster than
non-validating parsers.

Noga, Schott, and Lowe [10] provide a classification of
parsers based on control-flow (push vs. pull) and type infor-
mation access (compiled vs. interpreted). They also present
an architecture for lazy (pulled and interpreted) XML pro-
cessing.

Engelen and Gallivan also use context-free methods [5].
They generate predictive parsers directly as opposed to
through an intermediate representation.

7 Conclusion and Future Work

This paper contributes a compiler-based approach to
schema-specific parsing of XML. Analogues to compiler
design are drawn, where appropriate, and applied to schema
compilation. A simple formal machine, the generalized
automata, provides a flexible model for developing code
optimization algorithms and code generation. The generated
parser is executed natively by the hardware, rather than
interpreted, as in some other validation approaches. Results
suggest that our approach to SSP is significantly faster than
non-schema-specific parsers.

Further work will expand the supported subset of XML
Schema, and investigate other kinds of back-ends and front-
ends. Similarly to compilers, multiple intermediate represen-
tations may be useful. For example, it may be appropriate to
first use a tree grammar representation to perform some
transformations at the schema level. The tree grammar might
then be converted to a GA for further manipulation. We also
wish to explore the relationship of GAs to structures such as
control flow graphs.

Another issue is other schema languages. Other schema
languages may have ambiguity issues that will present prob-
lems for the NGA to DGA conversion algorithm.

For large schemas, techniques may be needed to improve
code locality to avoid instruction cache thrashing. We may
wish to find similar sub-graphs, and merge these into one
graph. Additional variables may be used to handle small dif-
ferences between the original sub-graphs.

Another way to reduce code size is through the use of
common action elimination. Often all transitions into a state
will execute the same action. Rather than duplicate the
action, we can simply execute the common action upon entry
to the state.

Further design and development of an appropriate user
API is also required. The interface should balance efficiency
against usability.

8 Acknowledgements

We thank Steve Gabriel for suggesting the superset construc-
tion algorithm described in the appendix. We also thank
Sriram Krishnan, Aleksander Slominski, and Matt Sottile for
useful comments and discussion.

9 References

(1]

(9]

[10]

[11]

[12]

[13]

[14]

Boris Chidlovskii. Using Regular Tree Automata as
XML Schemas. In Proceedings of IEEE Advances in
Digital Libraries 2000 (ADL 2000). May 22 - 24,
2000, Washington, D.C.

Kenneth Chiu, Madhusudhan Govindaraju, and Ran-
dall Bramley. Investigating the Limits of SOAP Per-
formance for Scientific Computing. In Proceedings
of the Eleventh IEEE International Symposium on
High Performance Distributed Computing (HPDC
'02), July 2002.

James Clark and Murata Makoto. RELAX NG Specifi-
cation. December, 2001. http://www.oasis-open.org/
committees/relax-ng/spec-20011203.html.

Hubert Comon, Max Dauchet, Remi Gilleron, Florent
Jacquemard, Denis Lugiez, Sophie Tison, and Marc
Tommasi. Tree Automata Techniques and Applica-
tions. http://www.grappa.univ-lille3.fr/tata/.

Robert A. van Engelen and Kyle Gallivan. The
2SOAP Toolkit for Web Services and Peer-To-Peer
Computing Networks. In Proceedings of the 2nd
IEEFE International Symposium on Cluster Comput-
ing and the Grid (CCGrid2002). May, 2002. Berlin,
Germany.

D. Lee, M. Mani, and M. Murata. “Reasoning about
XML Schema Languages using Formal Language
Theory”. Technical report, IBM Almaden Research
Center, RJ# 10197, Log# 95071, Nov. 2000.

Welf Lowe, Markus L. Noga, Thilo Gaul. Founda-
tions of Fast Communication via XML. Annals of
Software Engineering. Volume 13(1-4), p. 357-379,
January 2002.

M. Murata, D. Lee, and M. Mani. Taxonomy of XML
Schema Languages using Formal Language Theory.
In Extreme Markup Languages, Montreal, Canada,
Aug. 2001.

F. Neven. Automata theory for XML researchers.
SIGMOD Record, 31(3), 2002.

Markus L. Noga, Steffen Schott, and Welf Lowe.
Lazy XML processing. In Proceedings of the 2002
ACM Symposium on Document Engineering. ACM
Press.

Florian Reuter and Norbert Luttenberger. Cardinality
Constraint Automata: A Core Technology for Effi-
cient XML Schema-aware Parsers. http://
www.swarms.de/publications/cca.pdf.

Henry S. Thompson, et al. XML Schema Part 1:
Structures. http://www.w3.org/TR/xmlschema-1/.
Henry S. Thompson and Richard Tobin. Using Finite
State Automata to Implement W3C XML Schema
Content Model Validation and Restriction Checking.
In Proceedings of XML Europe 2003. http://www.ide-
alliance.org/papers/dx _xmle03/papers/02-02-05/02-
02-05.html.

Ning Wang, Peter S. Housel, Guogen Zhang and
Michael Franz. An Efficient XML Schema Typing

10

System. Technical Report 03-25. School of Informa-
tion and Computer Science, University of California,
Irvine. Nov., 18th, 2003.

Appendix: Superset Construction

Given a state p, we first partition the configuration space into
a set of equivalence classes Cl; based on the relation Rp.

Given two configurations &, and §,, they are related via
& R, €, iff for all # in trans(p), ©(§,) = ©(&,)
Each Cpi induces a set of transitions T’ pi , which is the

set of transitions enabled by the configurations in C pi .
Vee C,[(Vie T, (mE)) A (Vse T)(-mEN] (@)

We call each T pi an equi-enabled set, and the set of all equi-

enabled sets is the superset. An example is shown in
Figure 9.

We now outline an algorithm to construct the superset of
a state. First, we stipulate that all variables are integer-val-
ued, and that all predicates are boolean expressions com-
prised of relational operators of the form u op n, where 7 is
an integer and u is a variable. Each relational expression then
defines a hyperplane which partitions the configuration
space into two or three subspaces, depending on whether the
relation is an ordering relation or equal relation, respectively.

This suggests that we parse the predicates, and use each
relational expression to cut the configuration space along the
hyperplane defined by the expression. The cuts are cumula-
tive, so that when finished we have cut the configuration
space into rectangular regions such that for every region, we
can be assured that the same set of predicates is true.

We then test one configuration from each region on each
predicate. The set of true predicates for that one configura-
tion defines an equi-enabled set.

The restriction that the relational expression be of the
form u op » has not proven to be a problem, but we plan to
address it in future work. The primary complication is that if

Equivalence | Enabled
Class Transitions
A T1,T2
B T2, T3
C T1,T2, T3

Configuration Space

Figure 9. There are three equivalence at this particular state. Within each
equivalence class, the same set of predicates is enabled. This partitioning
thus induces three equi-enabled sets: {T1, T2}, {T2, T3}, and {T1, T2, T3}.

the expression is of the form u op v, then the cuts are not
orthogonal to a dimension, complicating the implementation.

11

	A Compiler-Based Approach to Schema-Specific XML Parsing
	1 Introduction
	2 XML Schema
	2.1 Types
	2.2 Recursive Schema
	2.3 Occurrence Constraints

	3 Schema-Specific Parsing
	3.1 Schema Compilation
	3.2 Generalized Automata
	3.2.1 Transition Function
	3.2.2 Instantaneous Description

	3.3 Nondeterministic GA (NGA) to Determinis tic GA (DGA) Conversion
	3.3.1 Move Compression
	3.3.2 Subset Construction

	3.4 Schema Predicates and Actions

	4 Code Generation
	5 Performance Results
	6 Related Work
	7 Conclusion and Future Work
	8 Acknowledgements
	9 References

