
Efficient Dynamic Indexing and Retrieval of XML Documents using Three-
Dimensional Quasi-BitCube

Biren Shah Abhilash Gummadi Jong P. Yoon Vijay Raghavan

University of Louisiana at Lafayette, P. O. Box 44330, CACS, Lafayette, LA 70504, USA
{bshah, axg1814, jyoon, raghavan}@cacs.louisiana.edu

ABSTRACT
 XML is a new standard for exchanging and representing
data on the Internet. Techniques for indexing and retrieval of
XML data is drawing increasing attention since they enable one
to access certain parts of retrieved documents easily. However,
they provide little or no support for adding new documents to an
existing document collection, requiring instead that the entire
collection be re-indexed. Modern applications, based on XML
indexing and retrieval, operate in dynamic environments that
require frequent additions to document collections. An indexing
structure known as the BitCube has been proposed to perform
fast query processing on XML documents. One of the major
disadvantages in using a BitCube is its inefficient memory
management. In this paper, we propose an extended BitCube,
also known as a Quasi-BitCube, which manages memory much
more effectively while maintaining the same query processing
efficiency of a BitCube. Our work also aims at enabling
dynamic (or incremental) indexing of new documents to an
existing Quasi-BitCube, without requiring the entire collection
to be re-indexed. We have performed an extensive set of
experiments to test the effectiveness of both the Quasi-BitCube
index structure and the proposed dynamic algorithm to create
that indexing structure. The results show that, Quasi-BitCube
manages memory much more efficiently than the BitCube,
without compromising on the query processing time. Our results
from the experiments to test the performance of our dynamic
indexing algorithm show that it provides better update and
search costs than earlier schemes like the one used in
XQEngine, with acceptable space overheads.

1. INTRODUCTION

A majority of traditional business applications,
transactional systems and enterprise applications rely on
relational databases to maintain their data. As portals,
knowledge management systems and even e-mail have joined
the mainstream and have become indispensable daily tools, a
typical organization’s enterprise information is no longer
maintained as structured data alone. Typically, structured data
are the data with a repeated structure that can be easily stored in
the data tables of a relational database. Semi-structured
databases [1], unlike traditional databases, do not have a fixed
schema known in advance. Broadly speaking, semi-structured
data is self-describing and can model heterogeneity more
naturally than either relational or object-oriented database
systems. The eXtensible Markup Language (XML) [3] is a
commonly used data modeling technique for such data, and the
application of common XML tools blurs the distinction in
handling structured and unstructured data.

XML is a simplified subset of the Standard Generalized
Markup Language (SGML). It provides a file format for
representing data, a schema for describing data structure, and a
mechanism for extending and annotating Hyper-Text Markup

Language (HTML) with semantic information. The XML data
model carries both data and schema information, being naturally
suitable to represent semi-structured data. It is a standard for
representing and exchanging information on the Internet.

As XML is an evolving data representation format, the
awareness and acquaintance of XML among the database
developers and users is not adequate. As more and more data are
being represented in XML format, more tools for maintaining
the XML data are developed. As XML has become a part of
critical databases, the performance of such tools has become a
matter of concern. Research on indexing XML databases is
being actively pursued and is delivering efficient and effective
algorithms.

The representation of documents in XML paved way for
the possibility of content-based retrieval. The widespread use of
XML in digital libraries, product catalogues, scientific data
repositories and across the web prompted the development of
appropriate searching and browsing methods for XML
documents. As enterprise applications (or, web services)
continue to build upon XML, it is critical that they include a
search functionality that is fully compatible with XML. In order
to optimize query processing, the data need to be organized
(indexed) in a way that facilitates efficient retrieval. Without
indexes, the database may be forced to conduct a full data scan
to locate the desired data record, which can be a lengthy and an
inefficient process. Additionally, modern applications operate in
dynamic environments that require frequent additions to
document collections. There is an urgent need for an XML
indexing and retrieval technique that not only supports dynamic
indexing of new documents but also aids in efficient query
processing.
 The rest of the paper is organized as follows. Section 2
describes some of the related works in this area. Section 3
introduces some of the preliminary operations used elsewhere in
the paper. The proposed indexing approach is described in
Section 4. Section 5 describes the dynamic indexing algorithm
for our index structure. In section 6, we provide experimental
results to access the properties of indexing and dynamic
indexing based on our approach and we compare it with
previous approaches. In section 7, we summarize the results of
our study, draw conclusions and identify future work.

2. RELATED WORK

Among the types of indexes supported or under exploration
by commercial database vendors are B+ trees [15], hash indexes
[15], signature files [6], inverted files [21], latent semantic
indexing [14] and R-trees [8]. These indexing techniques can be
evaluated based on access/insertion/deletion time and disk-space
needed. Each indexing technique differs in its implementation
and target use and at the same time offers the potential to
improve query performance for different applications.

Although XML can support both structure and content-
based information retrieval, efficient indexing is an important

problem in improving the performance of XML query
processing. Typical indexing techniques [6, 8, 14, 15, 21], from
the database and information retrieval communities, however,
are still not satisfactory. It is partly because they cannot scale
much beyond their current point to larger collections, and partly
because semantic and structural equivalencies are not efficiently
checked and maintained in the indexes.

Index structures for semi-structured data have been
developed in recent years. Examples of such indexes for semi-
structured data are XQEngine [11], Dataguides [7], XMill [13],
Toxin [16] and ViST[18]. A new data structure, called X-tree
[2], has been introduced for storing very high dimensional data.

To overcome the problem of efficiently managing large
collections of XML data, we have proposed a new 3-
dimensional bitmap indexing technique (BitCube) in [19]. A
BitCube is conceptually defined to store information in the form
of bits pertaining to the existence of relationships between
documents, paths and words. It supports bit wise operations to
handle various types of queries and this is what makes it highly
efficient in terms of query processing. In spite of this advantage,
it consumes large volumes of memory. The BitCube structure is
a sparse structure and, when maintained in main memory,
creates a memory bottleneck.

Full-text information retrieval systems have traditionally
been designed for archival environments. Almost all of the
above indexing approaches were developed for large static
document collections and they provide little or no support for
adding new documents to an existing document collection,
requiring instead that the entire collection be re-indexed.

[4] proposed a technique for fast incremental indexing of
full-text information retrieval using inverted files. Their method,
however, achieves best performance by limiting the number of
times an inverted list will be relocated due to its growth, thereby
requiring large batches of new documents to be added to the
index to reduce the overall number of updates.

[10] proposed an effective mechanism for incremental
update of indices in structured documents. It uses an
implementation technique of Bottom Up Scheme (BUS) [17] in
a relational database management system to facilitate the
incremental update of indices. To conserve space, BUS saves
indexing information in the leaf nodes, whereas in intermediate
nodes, it is computed at run time. As a result, if a user wants to
get information at an intermediate level, all the term frequencies
at leaf nodes need to be accumulated to the corresponding ones
in the intermediate level, which may take a certain amount of
time and thereby affecting the overall retrieval performance. To
facilitate the accumulation of term frequencies into the
corresponding internal nodes, each element is assigned a unique
element identifier according to the order of the level-order tree
traversal. This eventually leads to costly updates for certain
changes in the element structures.

In this paper, we contribute to two different indexing
enhancement schemes. First, to overcome the memory problem,
we propose an extension of our BitCube indexing structure,
known as Quasi-BitCube. Quasi-BitCube is fine-tuned to
manage memory much more optimally and at the same time
retains the same query processing efficiency of a BitCube. We
compare our new indexing time and size with our earlier work
that uses BitCube. Second, we propose an efficient algorithm for
dynamic indexing of new XML documents to an existing index
structure (i.e. Quasi-BitCube), without requiring the entire
collection to be re-indexed. We compare our dynamic indexing

time with XQEngine [11] and the traditional approach of
indexing, where the entire document collection is re-indexed.
From the retrieval perspective, we compare the query processing
time of our new index enhancement schemes with BitCube [19]
and XQEngine [11] for different types of queries.

3. PRIMITIVE OPERATIONS

3.1 Density of an XML Document
An XML document can be described by its density. Let D

denote any document collection. Let e1, e2, …, em be the m paths
and w1, w2, …, wn denote the n words in a given document d.
Let Nw and Ne be the total number of unique words and paths,
respectively, in the entire document collection D. d(i,j) = 1 if d
contains word wj in path ei, and 0 otherwise. Density of d is
defined as:

density(d) =

we NN

C

×
, (1)

where C is the number of unique (e,w) pairs contained in d and
is defined as:

C = |(ei,wj)|mxn, (2)

such that d(i,j) = 1, for 1 � i � Ne, 1 � j � Nw. A document d is t-
popular if density(d) � t, (0 � t � 1) for a given t, which is the
density threshold. A document d is t-unpopular if density(d) < t,
(0 � t � 1). For example, Table 1 shows a document bitmap for a
sample document d. e1, e2, e3 represent the paths and w1, w2, w3,
w4, w5 represent the words contained in d. Let the document
collection D to which document d belongs have 6 unique paths
and 20 unique words. Using equation (1) and (2), density of d is
given by density(d) = 6/(6x20)= 0.05.

3.2 Index Value of a Document Bitmap
In the index structure that we are using, each document has

an associated index value, which represents a positional value in
the index structure, useful in efficiently accessing the document
bitmap. For example, from Table 2.a, indexValue(d1) = 1,
indexValue(d2) = , and so on.

3.3 Shift Operator
When new documents are added incrementally into the

existing index structure, the index value of each document di is
shifted by a value si in order to allow insertions of new
documents at their appropriate positions. Let ip and ip(new) be the

Table 1: Example (Density)

(ei,wj) w1 w2 w3 w4 w5

e1 1 0 1 0 0
e2 1 0 0 1 0
e3 0 1 0 0 1

Table 2.a: Example (Density and Index Values
before Incremental Indexing)

Document d1 d2 d3
Density 0.4 0.3 0.2
Index value 1 2 3

Table 2.b: Example (Density and Index Values
after Incremental Indexing)

Document d1 d2 d3 d4 d5
Density 0.4 0.3 0.2 0.25 0.35
Index value 1 3 5 4 2

index values of a document d before and after dynamic
indexing, respectively. Shift of d is defined as:

shift(d) = ip(new) – ip (3)

 For example, Table 2.a shows the density and index values
of documents d1, d2, d3 in the original index structure.
Documents d4 and d5 are incrementally added into the index
structure corresponding to Table 2.a. Table 2.b shows the
density and index values of documents d1, d2, d3, d4, d5 in the
dynamically updated index structure. Using equation (3),
shift(d1) = 1-1 = 0, shift(d2) = 3-2 = 1, and so on.

3.4 Document Ordering
Let p1, p2, …, pN be the density values of N documents d1,

d2, …, dN. The N documents are said to be in order determined
by its density if and only if the following 2 conditions hold true:
i. indexValue(d1)=1, indexValue(d2)=2, …, indexValue(dN)=N
ii. p1 � p2 � … � pN

For example, if density is used to determine document
ordering, from Table 2.b, we see that a proper ordering of
documents is d1, d5, d2, d4, d3.

4. QUASI-BITCUBE
An XML document is defined as a set of (e,w) pairs, where

e denotes an element path and w denotes a word in a path. A
BitCube [19] is a 3-dimensional bitmap index. A BitCube
represents a set of documents together with a set of paths and a
set of words for each path. A BitCube for XML documents is
defined as BitCube = (d,e,w,b), where d denotes an XML
document, e denotes a path, w denotes a word, and b is either 0
or 1, the value for a bit in BitCube (if e contains w, the bit is set
to 1, and 0 otherwise). Figure 1.a shows an example BitCube.

A Quasi-BitCube is an extension of BitCube that retains
many of its powerful features and at the same time has a lot
more structural advantage. The main advantage of a BitCube (or
a Quasi-BitCube) lies in its high-speed query processing ability.
The primary enhancement of a Quasi-BitCube is the rectification
of memory constraints in the so-called BitCube. The structure is
significantly reorganized to contain as small number of bits as
deemed pragmatic while retaining the same query processing
and indexing times. Unlike other index structures, where I/O and
caching are important (since they do not fit entirely into the
main memory) for efficient access, our index structure is dense
and stores information in the form of bits and hence can entirely
fit into the main memory. I/O operations are, however, required
and are dominant during the index creation or modification.

The BitCube structure is sparse. There is a documents bit
vector (dbv) for each (e,w) pair. The bit is SET if the (e,w) pair
exists in the corresponding document and RESET otherwise. In

a real-time environment, it is very unlikely that a document will
contain all the paths and the words contained in all the other
documents. This means that numerous bits towards the top of
each documents bit vector are consuming space and are
superfluous (see Figure 1.b).

To circumvent the possibility that a document contains all
the paths and words contained in all the other documents, we use
document ordering, based on the density of each document. Our
heuristic here is to have the documents with high density placed
towards the bottom of the index structure. A document with a
greater number of unique (e,w) pairs is more popular than a
document with fewer number of unique (e,w) pairs. So, if there
exists a document that contains all of the paths and words
contained in all the other documents, then it will have the
highest density, and hence will be placed towards the bottom.
Additionally, documents can have similar properties and
popularities. In such cases, documents can be clustered [19] to
further resolve the issue of ordering equally popular documents.
Thus, the resulting index structure will be dense towards the
bottom and sparse towards the top. The redundant (zero bits)
bits from the sparse end of the structure can now just be
discarded.

Let Nd be the total number of documents in any given
collection D. Let Nw and Ne be the total number of unique words
and paths, respectively, in D. Let dbv(e,w) denote the documents
bit vector at any given (path, word) pair, (e,w). Let size(e,w)
denote the length (in number of bits), of dbv(e,w), which is the
number of bits actually stored, after the 0’s towards the top of
dbv(e,w) are discarded. The total size (in number of bytes) of the
BitCube or a Quasi-BitCube index structure is given by:

bytes

jisize

BitCubeQuasiorBitCubesizetotal

w eN

i

N

j

8

),(

)(1 1
��

= ==− (4)

Since, for a BitCube, size(i,j) = Nd, ∀ i, j, 1 ≤ i ≤ Nw, 1 ≤ j ≤
Ne, equation (4) reduces to

bytesNNN

N

BitCubesizetotal wed

N

i

N

j
d

w e

××==
��

= =

8
)(1 1 (5)

The main characteristics of Quasi-BitCube index structure
can be summarized as follows:
i. Simple, yet dynamic structure
ii. Memory efficient structure
iii. Efficient query processing due to bit-wise operations
iv. Documents are ordered based on their density

Figure 1.a: BitCube

Figure 1.b: Documents Bits Vector Example

i. For each document di (i = 1 … N) in the original document
collection

pi = density(di)
ii. Set count = 0
iii. For each document dj (j = N+1 … N+M) to be incrementally

added {
pj = density(dj)
For each (e,w) pair in document dj {

If there does not exist dbv(e,w) in 2D-index then
 Create new dbv(e,w)
 dbv(e,w)[count] = 1
 Update 2D-index structure.
}
count = count + 1

}
iv. Determine the new document ordering using the density values

from (i) and (iii) above.
v. For each document di (i = 1 … N) in the original document

collection
si = shift(di)

vi. For each document dj (j = N+1 … N+M) to be incrementally
added

ipj(new) = indexValue(dj)
vii. Create a new (e,w) index plane of size (Oe+Ce)x(Ow+Cw).
viii. For each document di (i = 1 … N) in the original document

collection, determine its new index value and update the dbvnew

as {
 ipi(new) = ipi + si
 For each (e,w) pair of document di in dbvold
 dbvnew(e,w)[ipi(new)] = dbvold(e,w)[ipi]
 }
ix. For each dbv corresponding to an (e,w) pair in 2D-index {
 count = 0

For each document dj (j=N+1 … N+M) to be incrementally
added, set ipj(new)

th bit of the dbvnew as {
dbvnew(e,w)[ipj(new)] = dbv(e,w)[count]
count = count + 1

 }
 }

Figure 3: Incremental Indexing Algorithm

5. DYNAMIC INDEXING
Creating an index (static) for semi-structured data (like

XML) that is physically stored in flat files requires two parses of
the original data as explained below:
i. Before building any index structure, the entire data space
needs to be parsed once to extract important metadata
information like its basic structure, relationships, etc. This
information could be used to optimize the initial size of the
index, create mapping tables for efficient access, determine the
ordering, etc.
ii. Once the metadata information is made available, during the
second parse, the index structure is then built in a way that
minimizes not only its size but also the overall access cost.
 For any indexing structure, dynamically updating the
existing one when new data arrives plays a very crucial role. We
propose an algorithm to efficiently perform this task of
dynamically indexing the Quasi-BitCube index structure. Our
algorithm differs from the traditional indexing, in the sense that
the dynamic index can be obtained by a simple permutation of
our original index. The resultant index structure, after dynamic
indexing, is the same as the index structure that would be
created if we had used the traditional approach of re-indexing all
the documents from scratch.

5.1 Notation
Let d1, d2, …, dN be the N documents in the original

document collection. These N documents are indexed into a
Quasi-BitCube Q. Let e be any path, w be any word and d be
any document. Let dN+1, dN+2, …, dN+M be the M documents to
be incrementally added into the Quasi-BitCube index structure
Q. Let Oe and Ow be the total number of unique paths and words,
respectively, in the N documents in the original document
collection. Let Ce and Cw be the new number of unique paths
and words, respectively, in the M documents to be incrementally
added. Let ip and ip(new) be the index values of a document
before and after dynamic indexing, respectively. Let dbvold and
dbvnew be the documents bit vectors of the original and the
dynamically updated index structure, respectively. Let dbv(e,w)
be the documents bit vector at (e,w) at any given point of time
during program execution.

5.2 Dynamic Indexing Algorithm
 Our algorithm efficiently supports dynamic indexing of
new documents into the already created index structure. The
process of computing the index data for the new set of
documents to be added incrementally is efficiently merged with
the ordered documents of the existing index structure, to create a
new structure that reflects the effective and unified indexing
organization of the entire document collection (old and new) as
a whole. Figure 2 depicts the sequence of operations performed
for dynamic indexing. The actual algorithm is shown in Figure
3. To improve the efficiency, our algorithm totally eliminates
the second parse of the new document collection while using a
little more main memory. The amount of indexing time saved by
doing this is significantly more than the amount of extra
memory used. Our algorithm uses dynamic hashing as a 2-D
index structure that maps all the unique (e,w) pairs as keys, in
the new set of documents to be incrementally added, to the

corresponding documents bit vector as their values. The density
and other metadata information for dynamic indexing are
computed in parallel with the creation of the 2-D index. Creating
such a 2-D index structure totally eliminates the second parse of
the new document collection, thereby further improving on the
indexing time, with acceptable space overheads.

1 iff the document corresponding to the
index value i contains word w in path e. dbv(e,w)[i] = {

0 otherwise

1st parse

Figure 2: Incremental Indexing

6

2
5

3

2

1

1st parse

Original Quasi-
BitCube

Updated Quasi-BitCube

Original Metadata
(Mapping Tables,

Document Ordering, etc.)

Combined
Metadata

(Original + New)

Documents to be
Added

Incrementally

2-D
Index

4

6. EXPERIMENTS

6.1 Goals
A detailed set of experiments were carried in order to

achieve the following goals:
i. To measure the memory savings attributable to the Quasi-

BitCube index structure by comparing its index size and
time with that of BitCube for different data distributions.

ii. To measure the efficiency of our dynamic indexing
algorithm by comparing it with traditional indexing and
XQEngine.

iii. To determine the optimal incremental batch size.
iv. To measure the retrieval efficiency of the Quasi-BitCube

index structure by comparing it with BitCube and
XQEngine for different types of query operations.

6.2 Data Sets

To achieve the above goals, four sets of experiments were
conducted using synthetic and real data sets (document
collections). The specification of the computer used in our
experiments is Intel Pentium 4 with 2.2 GHz processor and 1GB
RAM running Red-Hat Linux version 8.0.

The synthetic data set was generated using IBM’s XML
Generator [9]. Unlike real data sets, the distribution of data
within the document collection can be controlled in the case of
synthetic data sets. We varied certain parameters in the IBM’s
XML Generator for generating document collections having
four different data distributions: Sparse and Skewed, Sparse and
Uniform, Dense and Skewed, Dense and Uniform.

We used the public XML database DBLP [12] as the real
data set. The public XML database DBLP contains over 400,000
XML documents that can be grouped into one of the following
seven categories: Thesis (79), Article (147758), WWW (39),
Book (1029), Proceedings (4092), In-proceedings (258423) and
In-collections (1106). The numbers in the bracket indicate the
corresponding number of DBLP documents in that category.
Each document of DBLP corresponds to a publication in any
one of the seven categories listed above. The version 0.56 of
XQEngine was used for experimental comparisons.

6.3 Performance Evaluation

Instead of the absolute value, we sometimes report the Gain
in the time taken to dynamically index a given set of new
documents. Gain is defined as:

schemeltraditionatheoftimeindexingdynamic

schemeindexinggivenaoftimeindexingdynamic
Gain =

(6)

For example, a gain value of 0.1 implies that the given
dynamic indexing scheme is faster than the traditional scheme of
re-indexing all the documents by a factor of 10. Thus, the notion
here of maximizing the overall gain means that its value in
equation (6) should be minimized.

To determine the incremental batch size that maximizes the
overall performance, we plot the Geometric Mean (GM) values
of the Average Time per Document Insertion (ATDI) and the
Gain for different incremental batch sizes. GM is computed as
follows:

GainATDIGM ×= (7)

where,

addedllyincrementadocumentsofnumber

documentsgivenaddllyincrementatorequiredtime
ATDI =

(8)

To maximize the overall performance, the GM values
should be as small as possible.

6.4. Experiments and Results

6.4.1 Experiment I (Measure Memory Savings)
This experiment was performed to measure the

effectiveness of the Quasi-BitCube index structure by
comparing its index size and time with that of the BitCube for
different data distributions.

The total number of unique words and paths contained in
each synthetic document collection was fixed to 5000 and 4,
respectively. Figure 4 compares the index size of Quasi-BitCube
and BitCube for different data distributions with increasing
number of documents. The size of the BitCube index is
independent of the distribution of the data in the document
collection. Since Quasi-BitCube orders documents based on
their density, the index size highly depends on the distribution of
the data in the document collection. The results show that for all
four data distributions, the Quasi-BitCube index size is less than
the BitCube index size. The Quasi-BitCube index structure
saves most for sparse and skewed data than all the other
distributions and least for dense and uniform data.

Figure 4: Experiment I: Index Size Comparison

(Synthetic Data)

Figure 5 compares the index size of Quasi-BitCube and
BitCube with increasing number of documents selected from the
real data (DBLP) collection. The documents were randomly
selected from two of its largest collections, i.e. from article and
in-proceedings category. Each document record contains
information about a publication and the likelihood of two

0

2

4

6

8

10

12

5000 10000 15000 20000 25000 30000

T
h

o
u

sa
n

d
s

Number of Documents

S
iz

e
(M

B
)

BitCube Size (Article)
Quasi-BitCube Size (Article)
BitCube Size (In-proceedings)
Quasi-BitCube Size (In-proceedings)

Figure 5: Experiment I: Index Size Comparison (Real

DBLP Data)

distinct publications containing similar information is very less.
Hence, the entire collection contains large number of unique
words (i.e. low probability of word repetition). As a result,
unlike the synthetic data set, the total number of unique words
contained in each DBLP document collection increases almost
linearly with the size of the collection. The degree of sparseness
is thus very high, as a result of which the improvement is even
higher than synthetic data sets. Quasi-BitCube index size clearly
outperforms the BitCube index size.

The index times of both the structures were about the same.
Due to space limitations, we do not show those results here.
Thus, we see that, when compared to BitCube, the Quasi-
BitCube structure saves significant amount of index memory
without compromising on the indexing time.

6.4.2 Experiment II (Measure Efficiency)
This experiment was performed to measure the efficiency

of our dynamic indexing algorithm by comparing it with
traditional indexing and XQEngine.

The total number of unique words and paths contained in
the synthetic document collection was fixed to 10000 and 12,
respectively. The size of the synthetic document collection was
fixed to 10000 documents. From the real data (DBLP)
collection, we randomly selected 10000 documents from the
article category. Efficiency is then measured by varying the
incremental batch size. The corresponding gain values for the
synthetic and the real data sets are shown in Figure 6 and Figure
7, respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1% 10% 25% 50% 100% 150% 200%
Incremental Batch Size

G
ai

n

XQEngine/Traditional

Quasi-BitCube/Traditional

Figure 6: Experiment II: Dynamic Index Time Comparison by

varying Incremental Batch Size (Synthetic Data)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1% 0.5% 1% 10% 25% 50% 100% 150% 200%
Incremental Batch Size

G
ai

n

XQEngine/Traditional

Quasi-BitCube/Traditional

Figure 7: Experiment II: Dynamic Index Time Comparison

by varying Incremental Batch Size (Real DBLP Data)

The results show that the incremental update time of our
algorithm is significantly better than the traditional scheme of
re-indexing the entire document collection. XQEngine
performance is good for very small updates. The performance of
our dynamic indexing algorithm, when compared with
XQEngine, improves with the increase in the batch size and
eventually outperforms it.

6.4.3 Experiment III (Determine Optimal Batch Size)
This experiment was performed to determine the optimal

incremental batch size that not only minimizes the average time
required per document insertion but also maximizes the overall
gain.

For the synthetic data set used in Figure 6 and real data set
used in Figure 7, the corresponding GM results are shown in
Figure 8 and Figure 9, respectively.

The results show that the GM values are high for very
small and very large batch sizes. The GM initially decreases
with the increase in the batch size. After it has reached its
optimal value, it then follows a reverse trend and starts
increasing with the increase in the batch size. The desirable
optimal region is marked with dotted lines. We can say that the
performance of our dynamic indexing approach is close to
optimal when the GM values fall into the desired region.

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.
05

%
0.

1%
0.

25
%

0.
5% 1% 10

%
25

%
50

%
10

0%
15

0%
20

0%

Incremental Batch Size

G
eo

m
et

ri
c

M
ea

n

 Figure 8: Experiment III: Geometric Mean to
determine Optimal Batch Size (Synthetic Data)

0.7

1.2

1.7

2.2

2.7

0.5% 1% 5% 10% 25% 50% 100% 150% 200%

Incremental Batch Size

G
eo

m
et

ri
c

M
ea

n

Figure 9: Experiment III: Geometric Mean to
determine Optimal Batch Size (Real Data)

6.4.4 Experiment IV (Measure Retrieval Performance)
This experiment was performed to measure the retrieval

efficiency of the Quasi-BitCube index structure by comparing it
with BitCube and XQEngine for different types of query
operations.

We compared the query processing time for three different
operations: word slice, path slice and dice. A path slice takes a
path as input and returns a set of documents with words
associated with the given path. A word slice takes a word as
input and returns a set of documents with paths associated with
the given word. A dice operation is a combination of multiple
path and word slices.

We found that the query processing using Quasi-BitCube is
at least as efficient as BitCube for all the three types of query
operations. In [19], we have already shown that the query
performance of BitCube is significantly better than that of
XQEngine for word and path slice operations. The current
version of XQEngine does not support complex queries (e.g.
dice) involving logical AND-OR operations. Due to this
limitation, we cannot compare our dice operation results with
that of the XQEngine. Due to space limitations, we do not show
the detailed results.

7. CONCLUSION AND FUTURE WORK

The main contributions of the paper are:
i. Quasi-BitCube, a memory efficient indexing scheme
extended from BitCube is proposed. Since the information
stored is in the form of bits, the entire index structure fits into
the main memory and hence I/O operations are no longer a
concern during information retrieval. I/O, however, plays a
dominant role during index creation or modification. Our results
show that Quasi-BitCube manages memory much more
effectively and at the same time retains the same query
processing efficiency of a BitCube. The execution time of
Quasi-BitCube for different query operations is much more
efficient than XQEngine.
ii. Efficient dynamic indexing algorithm that supports
incremental addition of new XML documents to an existing
index structure, without requiring the entire collection to be re-
indexed. Experiments show that our dynamic indexing scheme
provides better update and search costs than the traditional
scheme, with acceptable space overheads. As the incremental
batch size increases, our dynamic indexing algorithm
outperforms not only the traditional scheme, but also XQEngine.
 Just recently, XQEngine has released its new version 0.60.
In the future, we plan to evaluate our current work against this
new release. Also, there is a growing demand of XML in the
areas relating to XLinks, XPointers and Security. As part of our
future work, we plan to extend our index structure to meet these
growing demands.

References
[1] S. Abiteboul, P. Buneman, D. Suciu, “Data on the Web:

from Relations to Semi-structured Data and XML”,
Morgan Kaufmann, (1999).

[2] S. Berchtold, D.A. Keim, H. P. Kriegel, “The X-Tree:
An Index Structure for High-Dimensional Data” , in
Proceedings of International Conference On Very Large
Data Bases, Bombay, India, (1996), pp. 28-39.

[3] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler,
“Extensible Markup Language (XML) 1.0 (Second

Edition)” , W3C Recommendation
(http://www.w3.org/TR/REC-xml), (2000).

[4] E. Brown, J. Callan, W. B. Croft, “Fast Incremental
Indexing for Full-Text Information Retrieval” , In
Proceedings of 20th International Conference on Very
Large Databases, Santiago, Chile, (1994), pp. 192-202.

[5] C. Chan, Y. Ioannidis, “Bitmap Index Design and
Evaluation” , In Proc. of International ACM SIGMOD
Conference, Seattle, WA, (1998), pp. 355-366.

[6] C. Faloutsos, “Signature Files: Design and Performance
Comparison of Some Signature Extraction Methods” , In
ACM SIGMOD, Montreal, Canada, (1985), pp. 63-82.

[7] R. Goldman, J. Widom, “DataGuides: Enabling Query
Formulation and Optimization in Semi-structured
Databases” , In Proc. of the Intl. Conference on Very
Large Databases, Athens, Greece, (1997), pp. 436-445.

[8] A.. Guttman, “R-Trees: A Dynamic Index Structure for
Spatial Searching,” In ACM SIGMOD (B. Yormark, ed.),
Boston, MA, (1984), pp. 47-57.

[9] IBM XML Generator,
http://www.alphaworks.ibm.com/tech/xmlgenerator,
Date: 1st May 2003, Time: 6:55 p.m.

[10] H. Jang, Y. Kim, D. Shin, “An Effective Mechanism for
Index Update in Structured Documents” , In Proc. of the
8th Intl. Conference on Information and Knowledge
Management, Kansas City, MO, (1999), pp. 383-390.

[11] H. Katz, “XQEngine” ,
http://sourceforge.net/projects/xqengine/, Date: 25th
February 2004, Time: 9:45 a.m.

[12] M. Ley, DBLP database web site,
http://www.informatik.uni-trier.de/ley/db, 2000.

[13] H. Liefke, D. Suciu, “XMill: An Efficient Compressor
for XML Data” , In Proceedings of ACM SIGMOD
Conference, Dallas, TX, (2000), pp. 153-164.

[14] C. Papadimitriou, H. Tamaki, P. Raghavan, S. Vempala,
“Latent Semantic Indexing: A Probabilistic Analysis,” In
Proc. of 17th ACM Symp. on Principles of Database
Systems, Seattle, WA, (1998) pp. 159-168.

[15] R. Ramakrishnan, J. Gehrke, “Database Management
Systems”, McGraw-Hill, 2000.

[16] F. Rizzolo, A. Mendelzon, “ Indexing XML Data with
ToXin” , In Proceedings of 4th Intl. Workshop on the Web
and Databases, Santa Barbara, CA, (2001), pp. 49-54.

[17] D. Shin , H. Jang , H. Jin, “BUS: An Effective Indexing
and Retrieval Scheme in Structured Documents” , In
Proc. of the 3rd ACM Conference on Digital Libraries,
Pittsburgh, PA, (1998), pp.235-243.

[18] H. Wang, S. Park, W. Fan, P. Yu, “XML Indexing and
Compression: ViST: A Dynamic Index Method for
Querying XML Data by Tree Structures” , In
Proceedings of ACM SIGMOD Conference, San Diego,
CA, (2003), pp. 110-121.

[19] J. Yoon, V. Raghavan, V. Chakilam, L. Kerschberg,
“BitCube: A Three-Dimensional Bitmap Indexing for
XML Document” , In Journal of Intelligent Information
Systems, 17 (2001), pp. 241-254.

[20] J. Yoon, A. Hafez, V. Raghavan, “Query Rewriting for
Multimedia XML Data,” In Proc. of the 6th Intl.
Workshop on MIS, Chicago, IL, (2000), pp. 62-71.

[21] J. Zobel, A. Moffat, K. Ramamohanarao, “ Inverted Files
Versus Signature Files for Text Indexing” , In ACM
Trans. on Database Sys., 23 (1998), pp. 453-490.

