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ABSTRACT 
 XML is a new standard for exchanging and representing 
data on the Internet. Techniques for indexing and retrieval of 
XML data is drawing increasing attention since they enable one 
to access certain parts of retrieved documents easily. However, 
they provide little or no support for adding new documents to an 
existing document collection, requiring instead that the entire 
collection be re-indexed. Modern applications, based on XML 
indexing and retrieval, operate in dynamic environments that 
require frequent additions to document collections. An indexing 
structure known as the BitCube has been proposed to perform 
fast query processing on XML documents. One of the major 
disadvantages in using a BitCube is its inefficient memory 
management. In this paper, we propose an extended BitCube, 
also known as a Quasi-BitCube, which manages memory much 
more effectively while maintaining the same query processing 
efficiency of a BitCube. Our work also aims at enabling 
dynamic (or incremental) indexing of new documents to an 
existing Quasi-BitCube, without requiring the entire collection 
to be re-indexed. We have performed an extensive set of 
experiments to test the effectiveness of both the Quasi-BitCube 
index structure and the proposed dynamic algorithm to create 
that indexing structure. The results show that, Quasi-BitCube 
manages memory much more efficiently than the BitCube, 
without compromising on the query processing time. Our results 
from the experiments to test the performance of our dynamic 
indexing algorithm show that it provides better update and 
search costs than earlier schemes like the one used in 
XQEngine, with acceptable space overheads. 

1. INTRODUCTION 

A majority of traditional business applications, 
transactional systems and enterprise applications rely on 
relational databases to maintain their data. As portals, 
knowledge management systems and even e-mail have joined 
the mainstream and have become indispensable daily tools, a 
typical organization’s enterprise information is no longer 
maintained as structured data alone. Typically, structured data 
are the data with a repeated structure that can be easily stored in 
the data tables of a relational database. Semi-structured 
databases [1], unlike traditional databases, do not have a fixed 
schema known in advance. Broadly speaking, semi-structured 
data is self-describing and can model heterogeneity more 
naturally than either relational or object-oriented database 
systems. The eXtensible Markup Language (XML) [3] is a 
commonly used data modeling technique for such data, and the 
application of common XML tools blurs the distinction in 
handling structured and unstructured data. 

XML is a simplified subset of the Standard Generalized 
Markup Language (SGML). It provides a file format for 
representing data, a schema for describing data structure, and a 
mechanism for extending and annotating Hyper-Text Markup 

Language (HTML) with semantic information. The XML data 
model carries both data and schema information, being naturally 
suitable to represent semi-structured data. It is a standard for 
representing and exchanging information on the Internet.  

As XML is an evolving data representation format, the 
awareness and acquaintance of XML among the database 
developers and users is not adequate. As more and more data are 
being represented in XML format, more tools for maintaining 
the XML data are developed. As XML has become a part of 
critical databases, the performance of such tools has become a 
matter of concern. Research on indexing XML databases is 
being actively pursued and is delivering efficient and effective 
algorithms.  

The representation of documents in XML paved way for 
the possibility of content-based retrieval. The widespread use of 
XML in digital libraries, product catalogues, scientific data 
repositories and across the web prompted the development of 
appropriate searching and browsing methods for XML 
documents. As enterprise applications (or, web services) 
continue to build upon XML, it is critical that they include a 
search functionality that is fully compatible with XML. In order 
to optimize query processing, the data need to be organized 
(indexed) in a way that facilitates efficient retrieval. Without 
indexes, the database may be forced to conduct a full data scan 
to locate the desired data record, which can be a lengthy and an 
inefficient process. Additionally, modern applications operate in 
dynamic environments that require frequent additions to 
document collections. There is an urgent need for an XML 
indexing and retrieval technique that not only supports dynamic 
indexing of new documents but also aids in efficient query 
processing. 
 The rest of the paper is organized as follows. Section 2 
describes some of the related works in this area. Section 3 
introduces some of the preliminary operations used elsewhere in 
the paper. The proposed indexing approach is described in 
Section 4. Section 5 describes the dynamic indexing algorithm 
for our index structure. In section 6, we provide experimental 
results to access the properties of indexing and dynamic 
indexing based on our approach and we compare it with 
previous approaches. In section 7, we summarize the results of 
our study, draw conclusions and identify future work. 

2. RELATED WORK 

Among the types of indexes supported or under exploration 
by commercial database vendors are B+ trees [15], hash indexes 
[15], signature files [6], inverted files [21], latent semantic 
indexing [14] and R-trees [8]. These indexing techniques can be 
evaluated based on access/insertion/deletion time and disk-space 
needed. Each indexing technique differs in its implementation 
and target use and at the same time offers the potential to 
improve query performance for different applications.  

Although XML can support both structure and content-
based information retrieval, efficient indexing is an important 



problem in improving the performance of XML query 
processing. Typical indexing techniques [6, 8, 14, 15, 21], from 
the database and information retrieval communities, however, 
are still not satisfactory. It is partly because they cannot scale 
much beyond their current point to larger collections, and partly 
because semantic and structural equivalencies are not efficiently 
checked and maintained in the indexes. 

Index structures for semi-structured data have been 
developed in recent years. Examples of such indexes for semi-
structured data are XQEngine [11], Dataguides [7], XMill [13], 
Toxin [16] and ViST[18]. A new data structure, called X-tree 
[2], has been introduced for storing very high dimensional data.  

To overcome the problem of efficiently managing large 
collections of XML data, we have proposed a new 3-
dimensional bitmap indexing technique (BitCube) in [19]. A 
BitCube is conceptually defined to store information in the form 
of bits pertaining to the existence of relationships between 
documents, paths and words. It supports bit wise operations to 
handle various types of queries and this is what makes it highly 
efficient in terms of query processing. In spite of this advantage, 
it consumes large volumes of memory. The BitCube structure is 
a sparse structure and, when maintained in main memory, 
creates a memory bottleneck.  

Full-text information retrieval systems have traditionally 
been designed for archival environments. Almost all of the 
above indexing approaches were developed for large static 
document collections and they provide little or no support for 
adding new documents to an existing document collection, 
requiring instead that the entire collection be re-indexed.  

[4]  proposed a technique for fast incremental indexing of 
full-text information retrieval using inverted files. Their method, 
however, achieves best performance by limiting the number of 
times an inverted list will be relocated due to its growth, thereby 
requiring large batches of new documents to be added to the 
index to reduce the overall number of updates. 

[10] proposed an effective mechanism for incremental 
update of indices in structured documents. It uses an 
implementation technique of Bottom Up Scheme (BUS) [17] in 
a relational database management system to facilitate the 
incremental update of indices. To conserve space, BUS saves 
indexing information in the leaf nodes, whereas in intermediate 
nodes, it is computed at run time. As a result, if a user wants to 
get information at an intermediate level, all the term frequencies 
at leaf nodes need to be accumulated to the corresponding ones 
in the intermediate level, which may take a certain amount of 
time and thereby affecting the overall retrieval performance. To 
facilitate the accumulation of term frequencies into the 
corresponding internal nodes, each element is assigned a unique 
element identifier according to the order of the level-order tree 
traversal. This eventually leads to costly updates for certain 
changes in the element structures.  

In this paper, we contribute to two different indexing 
enhancement schemes. First, to overcome the memory problem, 
we propose an extension of our BitCube indexing structure, 
known as Quasi-BitCube. Quasi-BitCube is fine-tuned to 
manage memory much more optimally and at the same time 
retains the same query processing efficiency of a BitCube. We 
compare our new indexing time and size with our earlier work 
that uses BitCube. Second, we propose an efficient algorithm for 
dynamic indexing of new XML documents to an existing index 
structure (i.e. Quasi-BitCube), without requiring the entire 
collection to be re-indexed. We compare our dynamic indexing 

time with XQEngine [11] and the traditional approach of 
indexing, where the entire document collection is re-indexed. 
From the retrieval perspective, we compare the query processing 
time of our new index enhancement schemes with BitCube [19] 
and XQEngine [11] for different types of queries. 

 
 

3. PRIMITIVE OPERATIONS 

3.1 Density of an XML Document 
An XML document can be described by its density. Let D 

denote any document collection. Let e1, e2, …, em be the m paths 
and w1, w2, …, wn denote the n words in a given document d. 
Let Nw and Ne be the total number of unique words and paths, 
respectively, in the entire document collection D. d(i,j) = 1 if d 
contains word wj in path ei, and 0 otherwise. Density of d is 
defined as: 

density(d) = 

we NN

C

×
, (1) 

where C is the number of unique (e,w) pairs contained in d and 
is defined as: 

C = |(ei,wj)|mxn, (2) 

such that d(i,j) = 1, for 1 � i � Ne, 1 � j � Nw. A document d is t-
popular if density(d) � t, (0 � t � 1) for a given t, which is the 
density threshold. A document d is t-unpopular if density(d) < t, 
(0 � t � 1). For example, Table 1 shows a document bitmap for a 
sample document d. e1, e2, e3 represent the paths and w1, w2, w3, 
w4, w5 represent the words contained in d. Let the document 
collection D to which document d belongs have 6 unique paths 
and 20 unique words. Using equation (1) and (2), density of d is 
given by density(d) = 6/(6x20)= 0.05. 

3.2 Index Value of a Document Bitmap 
In the index structure that we are using, each document has 

an associated index value, which represents a positional value in 
the index structure, useful in efficiently accessing the document 
bitmap. For example, from Table 2.a, indexValue(d1) = 1, 
indexValue(d2) = , and so on. 

3.3 Shift Operator 
When new documents are added incrementally into the 

existing index structure, the index value of each document di is 
shifted by a value si in order to allow insertions of new 
documents at their appropriate positions. Let ip and ip(new) be the 

Table 1: Example (Density) 

(ei,wj) w1 w2 w3 w4 w5 

e1 1 0 1 0 0 
e2 1 0 0 1 0 
e3 0 1 0 0 1 

 
Table 2.a: Example (Density and Index Values 
before Incremental Indexing) 

Document d1 d2 d3 
Density 0.4 0.3 0.2 
Index value 1 2 3 

 
Table 2.b: Example (Density and Index Values 
after Incremental Indexing) 

Document d1 d2 d3 d4 d5 
Density 0.4 0.3 0.2 0.25 0.35 
Index value 1 3 5 4 2 

 



index values of a document d before and after dynamic 
indexing, respectively. Shift of d is defined as: 

shift(d) = ip(new) – ip (3) 

 For example, Table 2.a shows the density and index values 
of documents d1, d2, d3 in the original index structure. 
Documents d4 and d5 are incrementally added into the index 
structure corresponding to Table 2.a. Table 2.b shows the 
density and index values of documents d1, d2, d3, d4, d5 in the 
dynamically updated index structure. Using equation (3), 
shift(d1) = 1-1 = 0, shift(d2) = 3-2 = 1, and so on. 

3.4 Document Ordering 
Let p1, p2, …, pN be the density values of N documents d1, 

d2, …, dN. The N documents are said to be in order determined 
by its density if and only if the following 2 conditions hold true: 
i. indexValue(d1)=1, indexValue(d2)=2, …, indexValue(dN)=N 
ii. p1 � p2 � … � pN 

For example, if density is used to determine document 
ordering, from Table 2.b, we see that a proper ordering of 
documents is d1, d5, d2, d4, d3. 

4. QUASI-BITCUBE 
An XML document is defined as a set of (e,w) pairs, where 

e denotes an element path and w denotes a word in a path. A 
BitCube [19] is a 3-dimensional bitmap index. A BitCube 
represents a set of documents together with a set of paths and a 
set of words for each path. A BitCube for XML documents is 
defined as BitCube = (d,e,w,b), where d denotes an XML 
document, e denotes a path, w denotes a word, and b is either 0 
or 1, the value for a bit in BitCube (if e contains w, the bit is set 
to 1, and 0 otherwise). Figure 1.a shows an example BitCube. 

A Quasi-BitCube is an extension of BitCube that retains 
many of its powerful features and at the same time has a lot 
more structural advantage. The main advantage of a BitCube (or 
a Quasi-BitCube) lies in its high-speed query processing ability. 
The primary enhancement of a Quasi-BitCube is the rectification 
of memory constraints in the so-called BitCube. The structure is 
significantly reorganized to contain as small number of bits as 
deemed pragmatic while retaining the same query processing 
and indexing times. Unlike other index structures, where I/O and 
caching are important (since they do not fit entirely into the 
main memory) for efficient access, our index structure is dense 
and stores information in the form of bits and hence can entirely 
fit into the main memory. I/O operations are, however, required 
and are dominant during the index creation or modification. 

The BitCube structure is sparse. There is a documents bit 
vector (dbv) for each (e,w) pair. The bit is SET if the (e,w) pair 
exists in the corresponding document and RESET otherwise. In 

a real-time environment, it is very unlikely that a document will 
contain all the paths and the words contained in all the other 
documents. This means that numerous bits towards the top of 
each documents bit vector are consuming space and are 
superfluous (see Figure 1.b). 

To circumvent the possibility that a document contains all 
the paths and words contained in all the other documents, we use 
document ordering, based on the density of each document. Our 
heuristic here is to have the documents with high density placed 
towards the bottom of the index structure. A document with a 
greater number of unique (e,w) pairs is more popular than a 
document with fewer number of unique (e,w) pairs. So, if there 
exists a document that contains all of the paths and words 
contained in all the other documents, then it will have the 
highest density, and hence will be placed towards the bottom. 
Additionally, documents can have similar properties and 
popularities. In such cases, documents can be clustered [19] to 
further resolve the issue of ordering equally popular documents. 
Thus, the resulting index structure will be dense towards the 
bottom and sparse towards the top. The redundant (zero bits) 
bits from the sparse end of the structure can now just be 
discarded.  

Let Nd be the total number of documents in any given 
collection D. Let Nw and Ne be the total number of unique words 
and paths, respectively, in D. Let dbv(e,w) denote the documents 
bit vector at any given (path, word) pair, (e,w). Let size(e,w) 
denote the length (in number of bits), of dbv(e,w), which is the 
number of bits actually stored, after the 0’s towards the top of 
dbv(e,w) are discarded. The total size (in number of bytes) of the 
BitCube or a Quasi-BitCube index structure is given by: 

bytes
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Since, for a BitCube, size(i,j) = Nd, ∀ i, j, 1 ≤ i ≤ Nw, 1 ≤ j ≤ 
Ne, equation (4) reduces to 
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The main characteristics of Quasi-BitCube index structure 
can be summarized as follows: 
i. Simple, yet dynamic structure 
ii. Memory efficient structure  
iii. Efficient query processing due to bit-wise operations 
iv. Documents are ordered based on their density 

 
Figure 1.a: BitCube 

 

Figure 1.b: Documents Bits Vector Example 



i. For each document di (i = 1 … N) in the original document 
collection 

pi = density(di) 
ii. Set count = 0 
iii. For each document dj (j = N+1 … N+M) to be incrementally 

added { 
pj = density(dj) 
For each (e,w) pair in document dj {  

If there does not exist dbv(e,w) in 2D-index then 
    Create new dbv(e,w) 
  dbv(e,w)[count] = 1 
   Update 2D-index structure. 
} 
count = count + 1 

} 
iv. Determine the new document ordering using the density values 

from (i) and (iii) above. 
v. For each document di (i = 1 … N) in the original document 

collection  
si = shift(di) 

vi. For each document dj (j = N+1 … N+M) to be incrementally 
added 

ipj(new) = indexValue(dj) 
vii. Create a new (e,w) index plane of size (Oe+Ce)x(Ow+Cw). 
viii. For each document di (i = 1 … N) in the original document 

collection, determine its new index value and update the dbvnew

as { 
  ipi(new) = ipi + si 
  For each (e,w) pair of document di in dbvold 
   dbvnew(e,w)[ipi(new)] = dbvold(e,w)[ipi] 
 } 
ix. For each dbv corresponding to an (e,w) pair in 2D-index { 
 count = 0 

For each document dj (j=N+1 … N+M) to be incrementally 
added, set ipj(new)

th bit of the dbvnew as {  
dbvnew(e,w)[ipj(new)] = dbv(e,w)[count] 
count = count + 1 

 } 
 } 

Figure 3: Incremental Indexing Algorithm 

5. DYNAMIC INDEXING 
Creating an index (static) for semi-structured data (like 

XML) that is physically stored in flat files requires two parses of 
the original data as explained below: 
i. Before building any index structure, the entire data space 
needs to be parsed once to extract important metadata 
information like its basic structure, relationships, etc. This 
information could be used to optimize the initial size of the 
index, create mapping tables for efficient access, determine the 
ordering, etc. 
ii. Once the metadata information is made available, during the 
second parse, the index structure is then built in a way that 
minimizes not only its size but also the overall access cost. 
 For any indexing structure, dynamically updating the 
existing one when new data arrives plays a very crucial role. We 
propose an algorithm to efficiently perform this task of 
dynamically indexing the Quasi-BitCube index structure. Our 
algorithm differs from the traditional indexing, in the sense that 
the dynamic index can be obtained by a simple permutation of 
our original index. The resultant index structure, after dynamic 
indexing, is the same as the index structure that would be 
created if we had used the traditional approach of re-indexing all 
the documents from scratch. 
 

5.1 Notation 
Let d1, d2, …, dN be the N documents in the original 

document collection. These N documents are indexed into a 
Quasi-BitCube Q. Let e be any path, w be any word and d be 
any document. Let dN+1, dN+2, …, dN+M be the M documents to 
be incrementally added into the Quasi-BitCube index structure 
Q. Let Oe and Ow be the total number of unique paths and words, 
respectively, in the N documents in the original document 
collection. Let Ce and Cw be the new number of unique paths 
and words, respectively, in the M documents to be incrementally 
added. Let ip and ip(new) be the index values of a document 
before and after dynamic indexing, respectively. Let dbvold and 
dbvnew be the documents bit vectors of the original and the 
dynamically updated index structure, respectively. Let dbv(e,w) 
be the documents bit vector at (e,w) at any given point of time 
during program execution. 

5.2 Dynamic Indexing Algorithm 
 Our algorithm efficiently supports dynamic indexing of 
new documents into the already created index structure. The 
process of computing the index data for the new set of 
documents to be added incrementally is efficiently merged with 
the ordered documents of the existing index structure, to create a 
new structure that reflects the effective and unified indexing 
organization of the entire document collection (old and new) as 
a whole. Figure 2 depicts the sequence of operations performed 
for dynamic indexing. The actual algorithm is shown in Figure 
3. To improve the efficiency, our algorithm totally eliminates 
the second parse of the new document collection while using a 
little more main memory. The amount of indexing time saved by 
doing this is significantly more than the amount of extra 
memory used. Our algorithm uses dynamic hashing as a 2-D 
index structure that maps all the unique (e,w) pairs as keys, in 
the new set of documents to be incrementally added, to the 

corresponding documents bit vector as their values. The density 
and other metadata information for dynamic indexing are 
computed in parallel with the creation of the 2-D index. Creating 
such a 2-D index structure totally eliminates the second parse of 
the new document collection, thereby further improving on the 
indexing time, with acceptable space overheads. 

 

1 iff the document corresponding to the 
index value i contains word w in path e. dbv(e,w)[i] = {

0 otherwise 
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Figure 2: Incremental Indexing 
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6. EXPERIMENTS 

6.1 Goals 
A detailed set of experiments were carried in order to 

achieve the following goals: 
i. To measure the memory savings attributable to the Quasi-

BitCube index structure by comparing its index size and 
time with that of BitCube for different data distributions. 

ii. To measure the efficiency of our dynamic indexing 
algorithm by comparing it with traditional indexing and 
XQEngine. 

iii. To determine the optimal incremental batch size. 
iv. To measure the retrieval efficiency of the Quasi-BitCube 

index structure by comparing it with BitCube and 
XQEngine for different types of query operations. 

 
6.2 Data Sets 

To achieve the above goals, four sets of experiments were 
conducted using synthetic and real data sets (document 
collections). The specification of the computer used in our 
experiments is Intel Pentium 4 with 2.2 GHz processor and 1GB 
RAM running Red-Hat Linux version 8.0.  

The synthetic data set was generated using IBM’s XML 
Generator [9]. Unlike real data sets, the distribution of data 
within the document collection can be controlled in the case of 
synthetic data sets. We varied certain parameters in the IBM’s 
XML Generator for generating document collections having 
four different data distributions: Sparse and Skewed, Sparse and 
Uniform, Dense and Skewed, Dense and Uniform.  

We used the public XML database DBLP [12] as the real 
data set. The public XML database DBLP contains over 400,000 
XML documents that can be grouped into one of the following 
seven categories: Thesis (79), Article (147758), WWW (39), 
Book (1029), Proceedings (4092), In-proceedings (258423) and 
In-collections (1106). The numbers in the bracket indicate the 
corresponding number of DBLP documents in that category. 
Each document of DBLP corresponds to a publication in any 
one of the seven categories listed above. The version 0.56 of 
XQEngine was used for experimental comparisons. 
 
6.3 Performance Evaluation 

Instead of the absolute value, we sometimes report the Gain 
in the time taken to dynamically index a given set of new 
documents. Gain is defined as: 

schemeltraditionatheoftimeindexingdynamic

schemeindexinggivenaoftimeindexingdynamic
Gain =  

(6) 

For example, a gain value of 0.1 implies that the given 
dynamic indexing scheme is faster than the traditional scheme of 
re-indexing all the documents by a factor of 10. Thus, the notion 
here of maximizing the overall gain means that its value in 
equation (6) should be minimized. 

To determine the incremental batch size that maximizes the 
overall performance, we plot the Geometric Mean (GM) values 
of the Average Time per Document Insertion (ATDI) and the 
Gain for different incremental batch sizes. GM is computed as 
follows: 

GainATDIGM ×=  (7) 

where, 

addedllyincrementadocumentsofnumber

documentsgivenaddllyincrementatorequiredtime
ATDI =  

(8) 

To maximize the overall performance, the GM values 
should be as small as possible. 

 
6.4. Experiments and Results 

6.4.1 Experiment I (Measure Memory Savings) 
This experiment was performed to measure the 

effectiveness of the Quasi-BitCube index structure by 
comparing its index size and time with that of the BitCube for 
different data distributions. 

The total number of unique words and paths contained in 
each synthetic document collection was fixed to 5000 and 4, 
respectively. Figure 4 compares the index size of Quasi-BitCube 
and BitCube for different data distributions with increasing 
number of documents. The size of the BitCube index is 
independent of the distribution of the data in the document 
collection. Since Quasi-BitCube orders documents based on 
their density, the index size highly depends on the distribution of 
the data in the document collection. The results show that for all 
four data distributions, the Quasi-BitCube index size is less than 
the BitCube index size. The Quasi-BitCube index structure 
saves most for sparse and skewed data than all the other 
distributions and least for dense and uniform data.  

 
Figure 4: Experiment I: Index Size Comparison 

(Synthetic Data) 

Figure 5 compares the index size of Quasi-BitCube and 
BitCube with increasing number of documents selected from the 
real data (DBLP) collection. The documents were randomly 
selected from two of its largest collections, i.e. from article and 
in-proceedings category. Each document record contains 
information about a publication and the likelihood of two 
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Figure 5: Experiment I: Index Size Comparison (Real 

DBLP Data) 



distinct publications containing similar information is very less. 
Hence, the entire collection contains large number of unique 
words (i.e. low probability of word repetition). As a result, 
unlike the synthetic data set, the total number of unique words 
contained in each DBLP document collection increases almost 
linearly with the size of the collection. The degree of sparseness 
is thus very high, as a result of which the improvement is even 
higher than synthetic data sets. Quasi-BitCube index size clearly 
outperforms the BitCube index size. 

The index times of both the structures were about the same. 
Due to space limitations, we do not show those results here. 
Thus, we see that, when compared to BitCube, the Quasi-
BitCube structure saves significant amount of index memory 
without compromising on the indexing time. 

6.4.2 Experiment II (Measure Efficiency) 
This experiment was performed to measure the efficiency 

of our dynamic indexing algorithm by comparing it with 
traditional indexing and XQEngine.  

The total number of unique words and paths contained in 
the synthetic document collection was fixed to 10000 and 12, 
respectively. The size of the synthetic document collection was 
fixed to 10000 documents. From the real data (DBLP) 
collection, we randomly selected 10000 documents from the 
article category. Efficiency is then measured by varying the 
incremental batch size. The corresponding gain values for the 
synthetic and the real data sets are shown in Figure 6 and Figure 
7, respectively. 
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Figure 6: Experiment II: Dynamic Index Time Comparison by 

varying Incremental Batch Size (Synthetic Data)  
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Figure 7: Experiment II: Dynamic Index Time Comparison 

by varying Incremental Batch Size (Real DBLP Data)  

The results show that the incremental update time of our 
algorithm is significantly better than the traditional scheme of 
re-indexing the entire document collection. XQEngine 
performance is good for very small updates. The performance of 
our dynamic indexing algorithm, when compared with 
XQEngine, improves with the increase in the batch size and 
eventually outperforms it.  

6.4.3 Experiment III (Determine Optimal Batch Size) 
This experiment was performed to determine the optimal 

incremental batch size that not only minimizes the average time 
required per document insertion but also maximizes the overall 
gain.  

For the synthetic data set used in Figure 6 and real data set 
used in Figure 7, the corresponding GM results are shown in 
Figure 8 and Figure 9, respectively. 

The results show that the GM values are high for very 
small and very large batch sizes. The GM initially decreases 
with the increase in the batch size. After it has reached its 
optimal value, it then follows a reverse trend and starts 
increasing with the increase in the batch size. The desirable 
optimal region is marked with dotted lines. We can say that the 
performance of our dynamic indexing approach is close to 
optimal when the GM values fall into the desired region. 
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 Figure 8: Experiment III: Geometric Mean to 
determine Optimal Batch Size (Synthetic Data) 
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Figure 9:  Experiment III: Geometric Mean to 
determine Optimal Batch Size (Real Data) 



6.4.4 Experiment IV (Measure Retrieval Performance) 
This experiment was performed to measure the retrieval 

efficiency of the Quasi-BitCube index structure by comparing it 
with BitCube and XQEngine for different types of query 
operations.  

We compared the query processing time for three different 
operations: word slice, path slice and dice. A path slice takes a 
path as input and returns a set of documents with words 
associated with the given path. A word slice takes a word as 
input and returns a set of documents with paths associated with 
the given word. A dice operation is a combination of multiple 
path and word slices.  

We found that the query processing using Quasi-BitCube is 
at least as efficient as BitCube for all the three types of query 
operations. In [19], we have already shown that the query 
performance of BitCube is significantly better than that of 
XQEngine for word and path slice operations. The current 
version of XQEngine does not support complex queries (e.g. 
dice) involving logical AND-OR operations. Due to this 
limitation, we cannot compare our dice operation results with 
that of the XQEngine. Due to space limitations, we do not show 
the detailed results. 

7. CONCLUSION AND FUTURE WORK 

The main contributions of the paper are:  
i. Quasi-BitCube, a memory efficient indexing scheme 
extended from BitCube is proposed. Since the information 
stored is in the form of bits, the entire index structure fits into 
the main memory and hence I/O operations are no longer a 
concern during information retrieval. I/O, however, plays a 
dominant role during index creation or modification. Our results 
show that Quasi-BitCube manages memory much more 
effectively and at the same time retains the same query 
processing efficiency of a BitCube. The execution time of 
Quasi-BitCube for different query operations is much more 
efficient than XQEngine. 
ii. Efficient dynamic indexing algorithm that supports 
incremental addition of new XML documents to an existing 
index structure, without requiring the entire collection to be re-
indexed. Experiments show that our dynamic indexing scheme 
provides better update and search costs than the traditional 
scheme, with acceptable space overheads. As the incremental 
batch size increases, our dynamic indexing algorithm 
outperforms not only the traditional scheme, but also XQEngine.  
 Just recently, XQEngine has released its new version 0.60. 
In the future, we plan to evaluate our current work against this 
new release. Also, there is a growing demand of XML in the 
areas relating to XLinks, XPointers and Security. As part of our 
future work, we plan to extend our index structure to meet these 
growing demands. 
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